Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 9(6): e00850, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676996

RESUMO

The anticancer agents platinum derivatives and taxanes such as paclitaxel (PCX) often cause neuropathy known as chemotherapy-induced peripheral neuropathy with high frequency. However, the cellular and molecular mechanisms underlying such neuropathy largely remain unknown. Here, we show new findings that the effect of Goshajinkigan (GJG), a Japanese KAMPO medicine, inhibits PCX-induced neuropathy by acting on astrocytes. The administration of PCX in mice caused the sustained neuropathy lasting at least 4 weeks, which included mechanical allodynia and thermal hyperalgesia but not cold allodynia. PCX-evoked pain behaviors were associated with the sensitization of all primary afferent fibers. PCX did not activate microglia or astrocytes in the spinal cord. However, it significantly activated astrocytes in the primary sensory (S1) cortex without affecting S1 microglial activation there. GJG significantly inhibited the PCX-induced mechanical allodynia by 50% and thermal hyperalgesia by 90%, which was in accordance with the abolishment of astrocytic activation in the S1 cortex. Finally, the inhibition of S1 astrocytes by an astrocyte-toxin L-alpha-aminoadipic acid abolished the PCX-induced neuropathy. Our findings suggest that astrocytes in the S1 cortex would play an important role in the pathogenesis of PCX-induced neuropathy and are a potential target for its treatment.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Neuralgia/tratamento farmacológico , Paclitaxel/efeitos adversos , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/efeitos adversos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Modelos Animais de Doenças , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos , Neuralgia/induzido quimicamente , Paclitaxel/administração & dosagem , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos
2.
Sci Rep ; 6: 29761, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27412485

RESUMO

The bladder urothelium is more than just a barrier. When the bladder is distended, the urothelium functions as a sensor to initiate the voiding reflex, during which it releases ATP via multiple mechanisms. However, the mechanisms underlying this ATP release in response to the various stretch stimuli caused by bladder filling remain largely unknown. Therefore, the aim of this study was to elucidate these mechanisms. By comparing vesicular nucleotide transporter (VNUT)-deficient and wild-type male mice, we showed that ATP has a crucial role in urine storage through exocytosis via a VNUT-dependent mechanism. VNUT was abundantly expressed in the bladder urothelium, and when the urothelium was weakly stimulated (i.e. in the early filling stages), it released ATP by exocytosis. VNUT-deficient mice showed reduced bladder compliance from the early storage phase and displayed frequent urination in inappropriate places without a change in voiding function. We conclude that urothelial, VNUT-dependent ATP exocytosis is involved in urine storage mechanisms that promote the relaxation of the bladder during the early stages of filling.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Animais , Células Cultivadas , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Bexiga Urinária/citologia , Bexiga Urinária/ultraestrutura , Sistema Urinário/metabolismo , Micção , Urotélio/citologia , Urotélio/ultraestrutura
3.
Cancer Biol Ther ; 17(11): 1206-1212, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27416484

RESUMO

Oxaliplatin-induced peripheral neuropathy (OIPN) occurs at extraordinarily high frequency, but no effective treatment for this disorder has been established. Goshajinkigan (GJG), a traditional Japanese medicine known as Kampo, is known to reduce OIPN in both basic and clinical studies. However, its molecular mechanisms remain largely unknown. Here, we elucidate the mechanisms underlying the therapeutic effects of GJG against OIPN and the therapeutic benefits of combining GJG with bushi, a herbal medicine derived from the processed Aconiti tuber. Oxaliplatin (4 mg/kg) was injected into mice twice a week for up to 4 and 3 weeks, respectively. OIPN was assessed using pain behavioral tests, such as those testing cold hypersensitivity, thermal hyperalgesia, and mechanical allodynia, as well as a reduction of the current perception threshold (CPT). GJG (0.3 or 1 g/kg) and bushi (0.1 or 0.3 g/kg) were orally administered 5 times a week for 4 weeks. Behavioral analysis was performed 24 h after the final dose. Oxaliplatin induced cold hypersensitivity and mechanical allodynia but not thermal hyperalgesia and reduced CPT of Aδ- and Aß-fibers but not C-fibers. All these effects were counteracted by GJG. Bushi, an ingredient of GJG that shows analgesic effect, reduced oxaliplatin-induced cold hypersensitivity but had no effect on oxaliplatin-induced mechanical allodynia. However, bushi significantly accentuated the effects of GJG when co-administered with GJG. GJG reduces OIPN by counteracting the sensitization of Aδ- and Aß-fibers and shows analgesic effects against cold hypersensitivity and mechanical allodynia. These effects are potentiated by bushi. The combination of GJG with bushi has high potential for preventing OIPN.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Compostos Organoplatínicos/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Antineoplásicos/efeitos adversos , Síndromes Periódicas Associadas à Criopirina/induzido quimicamente , Síndromes Periódicas Associadas à Criopirina/tratamento farmacológico , Modelos Animais de Doenças , Quimioterapia Combinada , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Oxaliplatina
5.
Glia ; 61(8): 1320-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23832620

RESUMO

Microglia survey the brain environment by sensing several types of diffusible molecules, among which extracellular nucleotides released/leaked from damaged cells have central roles. Microglia sense ATP or other nucleotides by multiple P2 receptors, after which they change into several different phenotypes. However, so far, it is largely unknown whether microglia themselves release ATP and, if so, by what mechanism. Here we show that exocytosis is the mechanism by which microglia release ATP. When we stimulated microglia with ionomycin, they released ATP and the release was dependent on Ca²âº, vesicular H⁺-ATPase, or SNAREs but independent of connexin/pannexin hemichannels. VNUT was found to be expressed in microglia and exhibited no colocalization with lysosome. We also visualized the exocytosis of ATP by a quinacrine-based fluorescent time-lapse imaging. Moreover, we found that lipopolysaccharide increased the ionomycin-induced release of ATP, which was dependent on the increase in VNUT. Taken together, our data suggested that exocytosis is the mechanism of ATP release from microglia. When activated, they would release ATP by increasing VNUT-dependent exocytotic mechanisms.


Assuntos
Trifosfato de Adenosina/metabolismo , Exocitose/fisiologia , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Microglia/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA