Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 81(17): 4545-4559, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210751

RESUMO

Blood levels of acute-phase protein α1-acid glycoprotein (AGP, orosmucoid) increase in patients with cancer. Although AGP is produced from hepatocytes following stimulation by immune cell-derived cytokines under conditions of inflammation and tumorigenesis, the functions of AGP in tumorigenesis and tumor progression remain unknown. In the present study, we revealed that AGP contributes directly to tumor development by induction of programmed death ligand 1 (PD-L1) expression and IL6 production in macrophages. Stimulation of AGP induced PD-L1 expression in both human monocyte-derived macrophages through STAT1 activation, whereas AGP had no direct effect on PD-L1 expression in tumor cells. AGP also induced IL6 production from macrophages, which stimulated proliferation in tumor cells by IL6R-mediated activation of STAT3. Furthermore, administration of AGP to AGP KO mice phenocopied effects of tumor-associated macrophages (TAM) on tumor progression. AGP decreased IFNγ secretion from T cells and enhanced STAT3 activation in subcutaneous tumor tissues. In addition, AGP regulated PD-L1 expression and IL6 production in macrophages by binding with CD14, a coreceptor for Toll-like receptor 4 (TLR4), and inducing TLR4 signaling. These results provide the first evidence that AGP is directly involved in tumorigenesis by interacting with TAMs and that AGP might be a target molecule for anticancer therapy. SIGNIFICANCE: AGP-mediated suppression of antitumor immunity contributes to tumor progression by inducing PD-L1 expression and IL6 production in TAMs.


Assuntos
Antígeno B7-H1/metabolismo , Macrófagos/metabolismo , Orosomucoide/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Carcinogênese , Proliferação de Células , Progressão da Doença , Elementos Facilitadores Genéticos , Hepatócitos/metabolismo , Terapia de Imunossupressão , Interferon gama/metabolismo , Macrófagos/citologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Orosomucoide/genética , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
2.
Drug Metab Dispos ; 49(9): 803-809, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34162689

RESUMO

Plant-derived nanoparticles exert cytoprotective effects on intestinal cells by delivering their cargo to intestinal tissues. We previously reported that apple-derived nanoparticles (APNPs) downregulate the mRNA of the human intestinal transporter organic anion-transporting peptide 2B1 (OATP2B1)/SLCO2B1 and that the 3'-untranslated region (3'UTR) is required for the response to APNPs. Here, we investigated the involvement of microRNAs (miRNAs) in APNPs in suppressing OATP2B1 expression to demonstrate that APNP macromolecules directly interact with intestinal tissues. Using in silico analysis, seven apple miRNAs were predicted as candidate miRNAs that interact with the SLCO2B1-3'UTR. The APNP-mediated decrease in luciferase activity of pGL3/SLCO2B1-3'UTR was abrogated by inhibitors of mdm-miR-160a-e, -7121a-c, or -7121d-h. Each miRNA mimic reduced the endogenous expression of SLCO2B1 mRNA in Caco-2 cells. The luciferase activity of the truncated pGL3/SLCO2B1-3'UTR, which contains approximately 200 bp around each miRNA recognition element (MRE), was decreased by the miR-7121d-h mimic but decreased little by the other mimics. APNP also reduced the luciferase activity of truncated pGL3/SLCO2B1-3'UTR containing an MRE for miR-7121d-h. Thus, we demonstrated that mdm-miR-7121d-h contributes to the APNP-mediated downregulation of intestinal OATP2B1. Accordingly, plant macromolecules, such as miRNAs, may directly interact with intestinal tissues via nanoparticles. SIGNIFICANCE STATEMENT: This study demonstrates that mdm-miR7121d-h contained in apple-derived nanoparticles downregulated the mRNA expression of SLCO2B1 by interacting with SLCO2B1-3'-untranslated region directly and that SLCO2B1 mRNA might also be decreased by mdm-miR160a-e and -7121a-c indirectly. This finding that the specific apple-derived microRNAs influence human intestinal transporters provides a novel concept that macromolecules in foods directly interact with and affect the intestinal function of the host.


Assuntos
Genes de Plantas/fisiologia , Intestinos , Malus , Transportadores de Ânions Orgânicos/metabolismo , Regiões 3' não Traduzidas , Células CACO-2 , Citoproteção , Regulação da Expressão Gênica de Plantas , Humanos , Intestinos/metabolismo , Intestinos/patologia , Malus/química , Malus/metabolismo , MicroRNAs , Nanopartículas/metabolismo , Compostos Fitoquímicos/metabolismo
3.
Sci Rep ; 11(1): 7953, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846468

RESUMO

The molecular mechanism for acute kidney injury (AKI) and its progression to chronic kidney disease (CKD) continues to be unclear. In this study, we investigated the pathophysiological role of the acute phase protein α1-acid glycoprotein (AGP) in AKI and its progression to CKD using AGP KO mice. Plasma AGP levels in WT mice were increased by about 3.5-fold on day 1-2 after renal ischemia-reperfusion (IR), and these values then gradually decreased to the level before renal IR on day 7-14. On day 1 after renal IR, the AGP KO showed higher renal dysfunction, tubular injury and renal inflammation as compared with WT. On day 14, renal function, tubular injury and renal inflammation in WT had recovered, but the recovery was delayed, and renal fibrosis continued to progress in AGP KO. These results obtained from AGP KO were rescued by the administration of human-derived AGP (hAGP) simultaneously with renal IR. In vitro experiments using RAW264.7 cells showed hAGP treatment suppressed the LPS-induced macrophage inflammatory response. These data suggest that endogenously induced AGP in early renal IR functions as a renoprotective molecule via its anti-inflammatory action. Thus, AGP represents a potential target molecule for therapeutic development in AKI and its progression CKD.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Anti-Inflamatórios/uso terapêutico , Progressão da Doença , Insuficiência Renal Crônica/tratamento farmacológico , alfa-Macroglobulinas/uso terapêutico , Injúria Renal Aguda/sangue , Injúria Renal Aguda/complicações , Animais , Anti-Inflamatórios/farmacologia , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Testes de Função Renal , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/sangue , alfa-Macroglobulinas/administração & dosagem , alfa-Macroglobulinas/farmacologia
4.
Pharm Res ; 38(3): 523-530, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33723795

RESUMO

PURPOSE: Food-derived nanoparticles exert cytoprotective effects on intestinal cells by delivering their cargo, which includes macromolecules such as microRNAs and proteins, as well as low-molecular weight compounds. We previously reported that apple-derived nanoparticles (APNPs) downregulate the expression of human intestinal transporter OATP2B1/SLCO2B1 mRNA. To verify the involvement of the cargo of APNPs in affecting the expression of transporters, we characterized the uptake mechanism of APNPs in intestinal cells. METHODS: The uptake of fluorescent PKH26-labeled APNPs (PKH-APNPs) into Caco-2, LS180, and HT-29MTX cells was evaluated by confocal microscopy and flow cytometry. RESULTS: The uptake of PKH-APNPs was prevented in the presence of clathrin-dependent endocytosis inhibitors, chlorpromazine and Pitstop2. Furthermore, PKH-APNPs were incorporated by the HT29-MTX cells, despite the disturbance of the mucus layer. Additionally, the decrease in SLCO2B1 mRNA by APNPs was reversed by Pitstop 2 in Caco-2 cells, indicating that APNPs decrease SLCO2B1 by being incorporated via clathrin-dependent endocytosis. CONCLUSIONS: We demonstrated that clathrin-dependent endocytosis was mainly involved in the uptake of APNPs by intestinal cells, and that the cargo in the APNPs downregulate the mRNA expression of SLCO2B1. Therefore, APNPs could be a useful tool to deliver large molecules such as microRNAs to intestinal cells.


Assuntos
Intestinos/patologia , Malus/química , Nanopartículas/química , Nanopartículas/metabolismo , Transporte Biológico , Células CACO-2 , Clatrina/metabolismo , Endocitose , Corantes Fluorescentes/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Intestinos/citologia , Imagem Óptica , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Distribuição Tecidual
5.
Pharmaceutics ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35056957

RESUMO

Gastrointestinal tract absorption of cationic anticancer drugs and medicines was estimated using whole-body imaging following oral [123I]MIBG administration. [123I]MIBG was added to cultures of human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)2B1, carnitine/organic cation transporter (OCTN)1 and OCTN2, and organic cation transporter (OCT)1, OCT2, and OCT3 with and without cimetidine (an OCTN and OCT inhibitor) and L-carnitine (an OCTN inhibitor). Biodistribution analyses and single-photon emission computed tomography (SPECT) imaging in normal and dextran sodium sulfate (DSS)-induced experimental colitis mice were conducted using [123I]MIBG with and without cimetidine. [123I]MIBG uptake was significantly higher in HEK293/OCTN1, 2, and OCT1-3 cells than in mock cells. Uptake via OCTN was inhibited by L-carnitine, whereas OCT-mediated uptake was inhibited by cimetidine. Biodistribution analyses and SPECT imaging studies showed significantly lower accumulation of [123I]MIBG in the blood, heart, liver, and bladder in DSS-induced experimental colitis mice and mice with cimetidine loading compared with normal mice, whereas significantly higher accumulation in the stomach and kidney was observed after [123I]MIBG injection. [123I]MIBG imaging after oral administration can be used to estimate gastrointestinal absorption in the small intestine via OCTN and/or OCT by measuring radioactivity in the heart, liver, and bladder.

6.
Kidney360 ; 1(5): 343-353, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35369369

RESUMO

Background: Recent clinical studies have shown that proteinuria is a critical factor in the progression of CKD and onset of cardiovascular disease. Inflammation and infiltration of macrophages into renal tissue are implicated as causes of proteinuria. α1-Acid glycoprotein (AGP), an acute-phase plasma protein, is leaked into the urine in patients with proteinuria. However, the relationship between urinary leakage of AGP, renal inflammation, and proteinuria remains unclear. Methods: Human AGP (hAGP) was exogenously administrated for 5 consecutive days to adriamycin-induced nephropathy model mice. Results: Adriamycin treatment increased urinary AGP, accompanied by decreased plasma AGP in mice. Exogenous hAGP administration to adriamycin-treated mice suppressed proteinuria, renal histologic injury, and inflammation. hAGP administration increased renal CD163 expression, a marker of anti-inflammatory macrophages. Similar changes were observed in PMA-differentiated THP-1 cells treated with hAGP. Even in the presence of LPS, hAGP treatment increased CD163/IL-10 expression in differentiated THP-1 cells. Conclusions: AGP alleviates proteinuria and renal injury in mice with proteinuric kidney disease via induction of CD163-expressing macrophages with anti-inflammatory function. The results demonstrate that endogenous AGP could work to protect against glomerular disease. Thus, AGP supplementation could be a possible new therapeutic intervention for patients with glomerular disease.


Assuntos
Nefropatias , Orosomucoide , Animais , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Doxorrubicina/efeitos adversos , Humanos , Nefropatias/induzido quimicamente , Macrófagos/metabolismo , Camundongos , Orosomucoide/metabolismo , Receptores de Superfície Celular
7.
J Pharmacol Exp Ther ; 368(2): 317-325, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420359

RESUMO

Prostaglandin transporter Oatp2a1/Slco2a1 is expressed at the apical (AP) membranes of type-1 alveolar epithelial (AT1) cells. To investigate the role of OATP2A1 in prostaglandin E2 (PGE2) handling by alveolar epithelium, we studied PGE2 transport across and secretion from monolayers of rat AT1-like (AT1-L) cells obtained by trans-differentiation of type-2 alveolar epithelial cells isolated from male Wistar rats. Rat AT1-L cells expressed Oatp2a1/Slco2a1, together with smaller amounts of Mrp4/Abcc4 and Oct1/Slc22a1 PGE2 uptake was saturable with Km 43.9 ± 21.9 nM. Transcellular transport of PGE2 across AT1-L cells grown on permeable filters in the AP-to-basolateral (BL) direction was 5-fold greater than that in the reverse direction and was saturable with Km 118 ± 26.8 nM; it was significantly inhibited by OATP inhibitors bromosulfophthalein (BSP) and suramin, and an MRP4 inhibitor, Ceefourin 1. We simultaneously monitored the effects of BSP on the distribution of PGE2 produced by bradykinin-treated AT1-L cells and PGE2-d4 externally added on the AP side of the cells. In the presence of BSP, PGE2 increased more rapidly on the AP side, whereas PGE2-d4 decreased more slowly on the AP side. The decrease in PGE2-d4 from the AP side corresponded well to the increase on the BL side, indicating that intracellular metabolism did not occur. These results suggest that Oatp2a1 and Mrp4 mediate transepithelial transport of PGE2 in the AP-to-BL direction. Therefore, OATP2A1 may be an important regulator of PGE2 in alveolar epithelium by reducing secretion of PGE2 and facilitating "resecretion" of PGE2 present in the alveolar lumen to the interstitial space or blood.


Assuntos
Dinoprostona/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Alvéolos Pulmonares/metabolismo , Mucosa Respiratória/metabolismo , Transcitose/fisiologia , Animais , Benzotiazóis/farmacologia , Relação Dose-Resposta a Droga , Masculino , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Alvéolos Pulmonares/efeitos dos fármacos , Ratos , Ratos Wistar , Mucosa Respiratória/efeitos dos fármacos , Transcitose/efeitos dos fármacos , Triazóis/farmacologia
8.
Sci Rep ; 8(1): 17329, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478350

RESUMO

Renal fibrosis, the characteristic feature of progressive chronic kidney disease, is associated with unremitting renal inflammation. Although it is reported that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, elicits an anti-renal fibrotic effect, its molecular mechanism is still unknown. In this study, renal fibrosis and inflammation observed in the kidney of unilateral ureteral obstruction (UUO) mice were reduced by the treatment of 1,25(OH)2D3. The plasma protein level of alpha-1-acid glycoprotein (AGP), a downstream molecule of 1,25(OH)2D3, was increased following administration of 1,25(OH)2D3. Additionally, increased mRNA expression of ORM1, an AGP gene, was observed in HepG2 cells and THP-1-derived macrophages that treated with 1,25(OH)2D3. To investigate the involvement of AGP, exogenous AGP was administered to UUO mice, resulting in attenuated renal fibrosis and inflammation. We also found the mRNA expression of CD163, a monocyte/macrophage marker with anti-inflammatory potential, was increased in THP-1-derived macrophages under stimulus from 1,25(OH)2D3 or AGP. Moreover, AGP prevented lipopolysaccharide-induced macrophage activation. Thus, AGP could be a key molecule in the protective effect of 1,25(OH)2D3 against renal fibrosis. Taken together, AGP may replace vitamin D to function as an important immune regulator, offering a novel therapeutic strategy for renal inflammation and fibrosis.


Assuntos
Nefropatias/patologia , Nefropatias/prevenção & controle , Orosomucoide/metabolismo , Vitamina D/análogos & derivados , Animais , Modelos Animais de Doenças , Fibrose , Células Hep G2 , Humanos , Nefropatias/etiologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos ICR , Orosomucoide/genética , Obstrução Ureteral/complicações , Vitamina D/farmacocinética , Vitamina D/farmacologia
9.
Mol Pharm ; 15(12): 5772-5780, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30359033

RESUMO

Interaction of foods with intestinal transporters has generally been ascribed to small molecules, but recently, edible-plant-derived nanoparticles (NPs) have been suggested to affect intestinal function. Here, we examined the effects of NPs contained in edible fruits on intestinal transporters. Apple-derived NPs (APNPs) were isolated by ultracentrifugation and characterized by measurement of particle size distribution and electron microscopy. Human epithelial colorectal adenocarcinoma (Caco-2) cells internalized fluorescently labeled APNPs, suggesting that fruit-derived NPs would be internalized into intestinal epithelial cells in vivo. We found that the mRNA expression levels of several transporters, including organic-anion-transporting polypeptide (OATP) 2B1, were changed in APNP-treated Caco-2 cells. The protein expression and activity of OATP2B1 were also decreased by APNP exposure, as determined by Western blotting and measurements of [3H]estrone-3-sulfate uptake by Caco-2 cells, respectively. These actions required intact APNPs, because sonication or boiling abrogated the effects. Since the content of apple-derived small molecules in APNPs was negligible, the observed decrease of OATP2B1 expression appears to be mediated by large molecules in the APNPs. We further found that the 3'-untranslated region of the OATP2B1 gene was required for the response to APNPs, suggesting that microRNA in the APNPs might be involved. These results propose a novel mechanism, in which large molecules such as microRNA in food could affect intestinal transporters through food-derived NPs, which also demonstrates that food-derived NPs should be useful for delivery of biologically active large molecules to intestinal tissues.


Assuntos
Portadores de Fármacos/farmacocinética , Frutas/química , Malus/química , Transportadores de Ânions Orgânicos/metabolismo , Plantas Comestíveis/química , Células CACO-2 , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química
10.
Biochim Biophys Acta Biomembr ; 1860(5): 973-980, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29317200

RESUMO

Hyperuricemia has been recognized as an independent risk factor for cardiovascular disease. Urate stimulates NADPH oxidase and induces production of reactive oxygen species (ROS); consequently, intracellular urate accumulation can induce oxidative stress leading to endothelial dysfunction. Here, we studied the mechanism involved, using human umbilical vascular endothelial cells (HUVEC) as a model. Pretreatment with 15 mg/dL unlabeled uric acid (corresponding to hyperuricemia) resulted in increased uptake of [14C]uric acid at steady-state by HUVEC, whereas pretreatment with 5 mg/dL uric acid (in the normal serum concentration range) did not. However, the initial uptake rate of [14C]uric acid was not affected by uric acid at either concentration. These results suggest that efflux transport of uric acid is decreased under hyperuricemic conditions. We observed a concomitant decrease of phosphorylated endothelial nitric oxide synthase. Plasma membrane expression of breast cancer resistance protein (BCRP), a uric acid efflux transporter, was decreased under hyperuricemia, though the total cellular expression of BCRP remained constant. Uric acid did not affect expression of another uric acid efflux transporter, multidrug resistance associated protein 4 (MRP4). Moreover, phosphorylation of Akt, which regulates plasma membrane localization of BCRP, was decreased. These uric acid-induced changes of BCRP and Akt were reversed in the presence of the antioxidant N-acetylcysteine. These results suggest that in hyperuricemia, uric acid-induced ROS generation inhibits Akt phosphorylation, causing a decrease in plasma membrane localization of BCRP, and the resulting decrease of BCRP-mediated efflux leads to increased uric acid accumulation and dysregulation of endothelial function.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hiperuricemia/genética , Hiperuricemia/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ácido Úrico/metabolismo , Antioxidantes/farmacologia , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Espaço Intracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
J Pharm Sci ; 106(9): 2524-2534, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28456731

RESUMO

This study aimed to investigate the interactions of 3 anticoagulants, rivaroxaban, apixaban, and dabigatran, with 5 human solute carrier transporters, hOAT1, hOAT3, hOCT2, hOATP1B1, and hOATP1B3. Apixaban inhibited hOAT3, hOATP1B1, and hOATP1B3, and rivaroxaban inhibited hOAT3 and hOATP1B3, with IC50 values of >20 and >5 µM, respectively. The effect of dabigatran was negligible or very weak, so significant drug interactions at therapeutic doses are unlikely. Specific uptake of rivaroxaban was observed only in human and mouse OAT3-expressing cells. The Km for mouse Oat3 (mOat3) was 1.01 ± 0.70 µM. A defect in mOat3 reduced the kidney-to-plasma concentration ratio of rivaroxaban by 38% in mice. Probenecid treatment also reduced the kidney-to-plasma concentration ratio of rivaroxaban in rats by 73%. Neither mOat3 defect nor probenecid administration in rats reduced the renal clearance of rivaroxaban. The uptake of rivaroxaban by monkey kidney slices was temperature dependent and inhibited by probenecid but not by tetraethylammonium. Taken together, organic anion transporters, mainly OAT3, may mediate basolateral uptake of rivaroxaban in kidneys. hOAT3 could be an additional factor that differentiates the potential drug-drug interactions of the 3 anticoagulants in the urinary excretion process in clinical settings.


Assuntos
Anticoagulantes/farmacocinética , Dabigatrana/farmacocinética , Rim/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Pirazóis/farmacocinética , Piridonas/farmacocinética , Rivaroxabana/farmacocinética , Animais , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia , Transporte Biológico/efeitos dos fármacos , Dabigatrana/metabolismo , Dabigatrana/farmacologia , Interações Medicamentosas , Feminino , Células HEK293 , Haplorrinos , Humanos , Rim/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Pirazóis/metabolismo , Pirazóis/farmacologia , Piridonas/metabolismo , Piridonas/farmacologia , Ratos , Ratos Sprague-Dawley , Rivaroxabana/metabolismo , Rivaroxabana/farmacologia
12.
Drug Metab Pharmacokinet ; 30(5): 352-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213156

RESUMO

The stereoselective pharmacokinetics of fexofenadine are associated with OATP2B1-mediated transport, and grapefruit juice (GFJ) is an inhibitor of OATP2B1. Therefore, in this study, we aimed to investigate whether and to what extent GFJ ingestion affected the pharmacokinetics of fexofenadine enantiomers in healthy subjects. In a randomized, two-phase, open-label, crossover study, 14 subjects received 60 mg of racemic fexofenadine simultaneously with water or GFJ. Ingestion of GFJ significantly decreased the areas under the plasma concentration-time curve (AUC0-24) for (R)- and (S)-fexofenadine by 39% and 52%, respectively. Subsequently, GFJ increased the mean R/S ratio of the AUC0-24 from 1.58 to 1.96 (P < 0.05). Although GFJ greatly reduced the amounts of (R)- and (S)-fexofenadine excreted into the urine (Ae0-24) by 52% and 61%, respectively, the mean R/S ratios of Ae0-24 and the renal clearances of both enantiomers were unchanged between the control and GFJ phases. GFJ, an OATP2B1 inhibitor, significantly reduced the plasma concentrations of fexofenadine enantiomers, exhibiting clinically moderate effects. The present results suggested that changes in OATP2B1 activity by GFJ may alter the stereoselective pharmacokinetics of fexofenadine and that reduced intestinal OATP2B1 activity may affect the stereoselectivity of fexofenadine.


Assuntos
Antialérgicos/farmacocinética , Bebidas , Citrus paradisi , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Terfenadina/análogos & derivados , Adulto , Antialérgicos/química , Área Sob a Curva , Estudos Cross-Over , Feminino , Interações Alimento-Droga , Humanos , Masculino , Estereoisomerismo , Terfenadina/química , Terfenadina/farmacocinética , Adulto Jovem
13.
PLoS One ; 10(4): e0123895, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923111

RESUMO

Prostaglandin (PG) E2 exhibits an anti-fibrotic effect in the lung in response to inflammatory reactions and is a high-affinity substrate of PG transporter (SLCO2A1). The present study aimed to evaluate the pathophysiological relevance of SLCO2A1 to bleomycin (BLM)-induced pulmonary fibrosis in mice. Immunohistochemical analysis indicated that Slco2a1 protein was expressed in airway and alveolar type I (ATI) and II (ATII) epithelial cells, and electron-microscopic immunohistochemistry further demonstrated cell surface expression of Slco2a1 in ATI cells in wild type (WT) C57BL/6 mice. PGE2 uptake activity was abrogated in ATI-like cells from Slco2a1-deficient (Slco2a1-/-) mice, which was clearly observed in the cells from WT mice. Furthermore, the PGE2 concentrations in lung tissues were lower in Slco2a1-/- than in WT mice. The pathological relevance of SLCO2A1 was further studied in mouse BLM-induced pulmonary fibrosis models. BLM (1 mg/kg) or vehicle (phosphate buffered saline) was intratracheally injected into WT and Slco2a1-/- mice, and BLM-induced fibrosis was evaluated on day 14. BLM induced more severe fibrosis in Slco2a1-/- than in WT mice, as indicated by thickened interstitial connective tissue and enhanced collagen deposition. PGE2 levels were higher in bronchoalveolar lavage fluid, but lower in lung tissues of Slco2a1-/- mice. Transcriptional upregulation of TGF-ß1 was associated with enhanced gene transcriptions of downstream targets including plasminogen activator inhitor-1. Furthermore, Western blot analysis demonstrated a significant activation of protein kinase C (PKC) δ along with a modest activation of Smad3 in lung from Slco2a1-/- mice, suggesting a role of PKCδ associated with TGF-ß signaling in aggravated fibrosis in BLM-treated Slco2a1-/- mice. In conclusion, pulmonary PGE2 disposition is largely regulated by SLCO2A1, demonstrating that SLCO2A1 plays a critical role in protecting the lung from BLM-induced fibrosis.


Assuntos
Bleomicina , Dinoprostona/imunologia , Pulmão/patologia , Transportadores de Ânions Orgânicos/imunologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Dinoprostona/análise , Deleção de Genes , Regulação da Expressão Gênica , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos Endogâmicos C57BL , Transportadores de Ânions Orgânicos/análise , Transportadores de Ânions Orgânicos/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Mensageiro/genética , Ratos Wistar
14.
J Pharm Pharmacol ; 67(2): 170-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25515305

RESUMO

OBJECTIVES: It has been reported that intestinal urate excretion is increased at chronic kidney disease (CKD) state. In this report, whether uremic toxins are involved in the upregulation of intestinal breast cancer resistance protein (BCRP), an intestinal urate exporter, was examined. METHODS: Uremic toxins that were increased at least 15-fold at CKD state were selected for investigation. Caco-2 cells were exposed to these uremic toxins at clinically relevant concentrations. mRNA was quantified by real-time PCR, and flow cytometry was utilized to measure BCRP protein and function in Caco-2 cells. Transcellular secretory transport of [(14) C]urate was determined utilizing Transwell studies after uremic toxin exposure. KEY FINDINGS: Indoxyl sulfate (IS) treatment alone resulted in ∼ 3-fold increase in BCRP mRNA in Caco-2 cells. Membrane protein expression of BCRP in Caco-2 cells also was increased by 1.8-fold after treatment with IS. Intracellular accumulation of pheophorbide A, a selective BCRP substrate, was decreased by 22% after IS treatment for 3 days. Consistent with these findings, transcellular secretory transport of urate across Caco-2 cell monolayers was increased by 22%. CONCLUSION: Intestinal urate secretion may be increased at CKD state partially by upregulation of intestinal BCRP by uremic toxins such as IS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Insuficiência Renal Crônica/metabolismo , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico , Neoplasias da Mama , Células CACO-2 , Clorofila/análogos & derivados , Clorofila/metabolismo , Humanos , Técnicas In Vitro , Indicã/farmacologia , Secreções Intestinais , Rim/metabolismo , Proteínas de Neoplasias/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
15.
Eur J Clin Pharmacol ; 70(9): 1087-95, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24903351

RESUMO

PURPOSE: We examined the effect of a single apple juice intake on the pharmacokinetics of fexofenadine enantiomers in healthy Japanese subjects. METHODS: In a randomized two phase, open-label crossover study, 14 subjects received 60 mg of racemic fexofenadine simultaneously with water or apple juice. For the uptake studies, oocytes expressing organic anion-transporting polypeptide 2B1 (OATP2B1) were incubated with 100 µM (R)- and (S)-fexofenadine in the presence or absence of 10 % apple juice. RESULTS: One-time ingestion of apple juice significantly decreased the area under the plasma concentration-time curve (AUC0-24) for (R)- and (S)-fexofenadine by 49 and 59 %, respectively, and prolonged the time to reach the maximum plasma concentration (t max) of both enantiomers (P < 0.001). Although apple juice greatly reduced the amount of (R)- and (S)-fexofenadine excretion into urine (Ae0-24) by 54 and 58 %, respectively, the renal clearances of both enantiomers were unchanged between the control and apple juice phases. For in vitro uptake studies, the uptake of both fexofenadine enantiomers into OATP2B1 complementary RNA (cRNA)-injected oocytes was significantly higher than that into water-injected oocytes, and this effect was greater for (R)-fexofenadine. In addition, apple juice significantly decreased the uptake of both enantiomers into OATP2B1 cRNA-injected oocytes. CONCLUSIONS: These results suggest that OATP2B1 plays an important role in the stereoselective pharmacokinetics of fexofenadine and that one-time apple juice ingestion probably inhibits intestinal OATP2B1-mediated transport of both enantiomers. In addition, this study demonstrates that the OATP2B1 inhibition effect does not require repeated ingestion or a large volume of apple juice.


Assuntos
Bebidas , Interações Alimento-Droga , Frutas , Malus , Transportadores de Ânions Orgânicos/metabolismo , Terfenadina/análogos & derivados , Adulto , Animais , Antialérgicos/sangue , Antialérgicos/química , Antialérgicos/farmacocinética , Antialérgicos/urina , Área Sob a Curva , Estudos Cross-Over , Ingestão de Alimentos , Feminino , Antagonistas não Sedativos dos Receptores H1 da Histamina/sangue , Antagonistas não Sedativos dos Receptores H1 da Histamina/química , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Antagonistas não Sedativos dos Receptores H1 da Histamina/urina , Humanos , Absorção Intestinal , Masculino , Oócitos/metabolismo , Transportadores de Ânions Orgânicos/genética , RNA Complementar/genética , Estereoisomerismo , Terfenadina/sangue , Terfenadina/química , Terfenadina/farmacocinética , Terfenadina/urina , Xenopus laevis , Adulto Jovem
17.
J Biol Chem ; 287(36): 30688-700, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22807450

RESUMO

CD163, a scavenger receptor that is expressed at high levels in the monocyte-macrophage system, is a critical factor for the efficient extracellular hemoglobin (Hb) clearance during hemolysis. Because of the enormous detrimental effect of liberated Hb on our body by its ability to induce pro-inflammatory signals and tissue damage, an understanding of the molecular mechanisms associated with CD163 expression during the acute phase response is a central issue. We report here that α(1)-acid glycoprotein (AGP), an acute phase protein, the serum concentration of which is elevated under various inflammatory conditions, including hemolysis, up-regulates CD163 expression in both macrophage-like differentiated THP-1 (dTHP-1) cells and peripheral blood mononuclear cells in a time- and concentration-dependent manner. Moreover, the subsequent induction of Hb uptake was also observed in AGP-treated dTHP-1 cells. Among representative acute phase proteins such as AGP, α(1)-antitrypsin, C-reactive protein, and haptoglobin, only AGP increased CD163 expression, suggesting that AGP plays a specific role in the regulation of CD163. Consistently, the physiological concentrations of AGP induced CD163, and the subsequent induction of Hb uptake as well as the reduction of oxidative stress in plasma were observed in phenylhydrazine-induced hemolytic model mice, confirming the in vivo role of AGP. Finally, AGP signaling through the toll-like receptor-4 (TLR4) and CD14, the common innate immune receptor complex that normally recognizes bacterial components, was identified as a crucial stimulus that induces the autocrine regulatory loops of IL-6 and/or IL-10 via NF-κB, p38, and JNK pathways, which leads to an enhancement in CD163 expression. These findings provide possible insights into how AGP exerts anti-inflammatory properties against hemolysis-induced oxidative stress.


Assuntos
Antígenos CD/biossíntese , Antígenos de Diferenciação Mielomonocítica/biossíntese , Hemólise , Receptores de Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Orosomucoide/metabolismo , Estresse Oxidativo , Receptores de Superfície Celular/biossíntese , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , Animais , Proteína C-Reativa/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Pharm Sci ; 101(4): 1607-15, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22227718

RESUMO

Human α(1) -acid glycoprotein (AGP), a lipocalin family member, serves as a carrier for basic drugs and endogenous hormones. It is mainly distributed in the liver and also has anti-inflammatory effects. We previously discovered a protein in liver parenchymal cells that interacts with AGP and it was identified as hemoglobin ß-chain (HBB). The purpose of this study was to clarify the role of HBB in the hepatic cellular uptake of AGP. Ligand blotting experiments showed that the interaction of (125) I-AGP with hemoglobin was saturable and was significantly suppressed in the presence of excess unlabeled AGP. In addition, the cellular uptake of fluorescein isothiocianate-AGP by HepG2 cells was saturable and temperature dependent. This uptake was inhibited by fillipin and methyl-ß-cyclodextrin, but not chlorpromazine, suggesting that AGP is taken up via caveolae/lipid rafts endocytic pathway. Immunostaining showed that HBB and caveolin-1, exclusively expressed in caveolae, were partially colocalized on the plasma membranes of HepG2 cells. HBB knockdown with siRNA decreased the uptake of AGP by HepG2 cells by 40%, and exogenous hemoglobin inhibited the uptake by 40%-50%. These findings indicate that HBB is located on the liver plasma membrane and that it contributes to the intracellular uptake of AGP.


Assuntos
Membrana Celular/metabolismo , Hemoglobinas/metabolismo , Fígado/metabolismo , Orosomucoide/farmacocinética , Cavéolas/fisiologia , Endocitose , Células Hep G2 , Humanos , Microdomínios da Membrana/fisiologia , Orosomucoide/química
19.
J Pharm Sci ; 101(4): 1599-606, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22081433

RESUMO

Human α(1) -acid glycoprotein (AGP), a serum glycoprotein, is known to have anti-inflammatory activity. We recently reported that AGP was mainly incorporated into the liver in mice via a receptor-mediated pathway, although the mechanism for this was largely unknown. The objective of this study was to identify the specific cellular surface protein that recognizes the peptide moiety of AGP. Pharmacokinetic studies of (111) In-AGP and (111) In -recombinant glycan-deficient AGP (rAGP) in mice demonstrated that both AGPs are mainly distributed to the liver and kidney, but hepatic and renal uptake clearance of rAGP was higher than that for AGP. Hepatic uptake of rAGP was inhibited in the presence of 100-fold excess of unlabeled AGP, indicating that the hepatic uptake of rAGP shared a common route with that of AGP and that it recognized the peptide moiety of AGPs. In ligand blotting analyses using crude cellular membrane fraction of mice liver, a band corresponding to a 16 kDa protein was observed to bind to both AGPs. Interestingly, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry MALDI-TOF-MS and western blotting analyses indicated that this 16 kDa protein is the hemoglobin ß-chain (HBB). It, therefore, appears that HBB is associated with the hepatic uptake of AGP via a direct interaction with its peptide moiety.


Assuntos
Hemoglobinas/metabolismo , Fígado/metabolismo , Orosomucoide/farmacocinética , Animais , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Orosomucoide/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
J Pharmacol Exp Ther ; 325(1): 69-76, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18218831

RESUMO

In recent studies, the cytotoxic activity of NO has been investigated for its potential use in anticancer therapies. Nitrosated human serum albumin (NO-HSA) may act as a reservoir of NO in vivo. However, there are no published reports regarding the effects of NO-HSA on cancer. Therefore, the present study investigated the antitumor activity of NO-HSA. NO-HSA was prepared by incubating HSA, which had been sulfhydrylated using iminothiolane, with isopentyl nitrite (6.64 mol NO/mol HSA). Antitumor activity was examined in vitro using murine colon 26 carcinoma (C26) cells and in vivo using C26 tumor-bearing mice. Exposure to NO-HSA increased the production of reactive oxygen species in C26 cells. Flow cytometric analysis using rhodamine 123 showed that NO-HSA caused mitochondrial depolarization. Activation of caspase-3 and DNA fragmentation were observed in C26 cells after incubation with 100 muM NO-HSA for 24 h, and NO-HSA inhibited the growth of C26 cells in a concentration-dependent manner. The growth of C26 tumors in mice was significantly inhibited by administration of NO-HSA compared with saline and HSA treatment. Immunohistochemical analysis of tumor tissues demonstrated an increase in terminal deoxynucleotidyl transferase dUTP nickend labeling-positive cells in NO-HSA-treated mice, suggesting that inhibition of tumor growth by NO-HSA was mediated through induction of apoptosis. Biochemical parameters (such as serum creatinine, blood urea nitrogen, aspartate aminotransferase, and alanine aminotransferase) showed no significant differences among the three treatment groups, indicating that NO-HSA did not cause hepatic or renal damage. These results suggest that NO-HSA has the potential for chemopreventive and/or chemotherapeutic activity with few side effects.


Assuntos
Neoplasias Experimentais/tratamento farmacológico , Compostos Nitrosos/uso terapêutico , Albumina Sérica/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias Experimentais/patologia , Compostos Nitrosos/síntese química , Compostos Nitrosos/farmacologia , Albumina Sérica/síntese química , Albumina Sérica/farmacologia , Albumina Sérica Humana , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA