Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889144

RESUMO

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Assuntos
Citoplasma , Schizosaccharomyces , Esporos Fúngicos , Trealose , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Citoplasma/metabolismo , Trealose/metabolismo , Glucose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
2.
Sci Rep ; 12(1): 2702, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177675

RESUMO

Cell tracking is one of the most critical tools for time-lapse image analysis to observe cell behavior and cell lineages over a long period of time. However, the accompanying graphical user interfaces are often difficult to use and do not incorporate seamless manual correction, data analysis tools, or simple training set design tools if it is machine learning based. In this paper, we introduce our cell tracking software "LIM Tracker". This software has a conventional tracking function consisting of recognition processing and link processing, a sequential search-type tracking function based on pattern matching, and a manual tracking function. LIM Tracker enables the seamless use of these functions. In addition, the system incorporates a highly interactive and interlocking data visualization method, which displays analysis result in real time, making it possible to flexibly correct the data and reduce the burden of tracking work. Moreover, recognition functions with deep learning (DL) are also available, which can be used for a wide range of targets including stain-free images. LIM Tracker allows researchers to track living objects with good usability and high versatility for various targets. We present a tracking case study based on fluorescence microscopy images (NRK-52E/EKAREV-NLS cells or MCF-10A/H2B-iRFP-P2A-mScarlet-I-hGem-P2A-PIP-NLS-mNeonGreen cells) and phase contrast microscopy images (Glioblastoma-astrocytoma U373 cells). LIM Tracker is implemented as a plugin for ImageJ/Fiji. The software can be downloaded from https://github.com/LIMT34/LIM-Tracker .


Assuntos
Rastreamento de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Imagem com Lapso de Tempo/métodos , Animais , Linhagem Celular , Aprendizado Profundo , Humanos , Microscopia de Fluorescência , Ratos
3.
Sci Rep ; 11(1): 4069, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603023

RESUMO

Collective cell migration is a fundamental process in embryonic development and tissue homeostasis. This is a macroscopic population-level phenomenon that emerges across hierarchy from microscopic cell-cell interactions; however, the underlying mechanism remains unclear. Here, we addressed this issue by focusing on epithelial collective cell migration, driven by the mechanical force regulated by chemical signals of traveling ERK activation waves, observed in wound healing. We propose a hierarchical mathematical framework for understanding how cells are orchestrated through mechanochemical cell-cell interaction. In this framework, we mathematically transformed a particle-based model at the cellular level into a continuum model at the tissue level. The continuum model described relationships between cell migration and mechanochemical variables, namely, ERK activity gradients, cell density, and velocity field, which could be compared with live-cell imaging data. Through numerical simulations, the continuum model recapitulated the ERK wave-induced collective cell migration in wound healing. We also numerically confirmed a consistency between these two models. Thus, our hierarchical approach offers a new theoretical platform to reveal a causality between macroscopic tissue-level and microscopic cellular-level phenomena. Furthermore, our model is also capable of deriving a theoretical insight on both of mechanical and chemical signals, in the causality of tissue and cellular dynamics.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Animais , Comunicação Celular/fisiologia , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Cicatrização/fisiologia
4.
Adv Exp Med Biol ; 1293: 225-234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398816

RESUMO

Cells respond to a wide range of extracellular stimuli, and process the input information through an intracellular signaling system comprised of biochemical and biophysical reactions, including enzymatic and protein-protein interactions. It is essential to understand the molecular mechanisms underlying intracellular signal transduction in order to clarify not only physiological cellular functions but also pathological processes such as tumorigenesis. Fluorescent proteins have revolutionized the field of life science, and brought the study of intracellular signaling to the single-cell and subcellular levels. Much effort has been devoted to developing genetically encoded fluorescent biosensors based on fluorescent proteins, which enable us to visualize the spatiotemporal dynamics of cell signaling. In addition, optogenetic techniques for controlling intracellular signal transduction systems have been developed and applied in recent years by regulating intracellular signaling in a light-dependent manner. Here, we outline the principles of biosensors for probing intracellular signaling and the optogenetic tools for manipulating them.


Assuntos
Técnicas Biossensoriais/métodos , Espaço Intracelular/metabolismo , Optogenética/métodos , Transdução de Sinais , Proteínas Luminescentes/análise
5.
J Biol Chem ; 294(15): 6062-6072, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30739083

RESUMO

Kinetic simulation is a useful approach for elucidating complex cell-signaling systems. The numerical simulations required for kinetic modeling in live cells critically require parameters such as protein concentrations and dissociation constants (Kd ). However, only a limited number of parameters have been measured experimentally in living cells. Here we describe an approach for quantifying the concentration and Kd of endogenous proteins at the single-cell level with CRISPR/Cas9-mediated knock-in and fluorescence cross-correlation spectroscopy. First, the mEGFP gene was knocked in at the end of the mitogen-activated protein kinase 1 (MAPK1) gene, encoding extracellular signal-regulated kinase 2 (ERK2), through homology-directed repair or microhomology-mediated end joining. Next, the HaloTag gene was knocked in at the end of the ribosomal S6 kinase 2 (RSK2) gene. We then used fluorescence correlation spectroscopy to measure the protein concentrations of endogenous ERK2-mEGFP and RSK2-HaloTag fusion constructs in living cells, revealing substantial heterogeneities. Moreover, fluorescence cross-correlation spectroscopy analyses revealed temporal changes in the apparent Kd values of the binding between ERK2-mEGFP and RSK2-HaloTag in response to epidermal growth factor stimulation. Our approach presented here provides a robust and efficient method for quantifying endogenous protein concentrations and dissociation constants in living cells.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sistemas CRISPR-Cas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Espectrometria de Fluorescência/métodos
6.
Dev Cell ; 43(3): 305-317.e5, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29112851

RESUMO

The biophysical framework of collective cell migration has been extensively investigated in recent years; however, it remains elusive how chemical inputs from neighboring cells are integrated to coordinate the collective movement. Here, we provide evidence that propagation waves of extracellular signal-related kinase (ERK) mitogen-activated protein kinase activation determine the direction of the collective cell migration. A wound-healing assay of Mardin-Darby canine kidney (MDCK) epithelial cells revealed two distinct types of ERK activation wave, a "tidal wave" from the wound, and a self-organized "spontaneous wave" in regions distant from the wound. In both cases, MDCK cells collectively migrated against the direction of the ERK activation wave. The inhibition of ERK activation propagation suppressed collective cell migration. An ERK activation wave spatiotemporally controlled actomyosin contraction and cell density. Furthermore, an optogenetic ERK activation wave reproduced the collective cell migration. These data provide new mechanistic insight into how cells sense the direction of collective cell migration.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Actomiosina/metabolismo , Animais , Cães , Ativação Enzimática , Rim/metabolismo , Fosforilação , Cicatrização/fisiologia
7.
Proc Natl Acad Sci U S A ; 114(21): E4149-E4157, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28495969

RESUMO

Cell-cell signaling is subject to variability in the extracellular volume, cell number, and dilution that potentially increase uncertainty in the absolute concentrations of the extracellular signaling molecules. To direct cell aggregation, the social amoebae Dictyostelium discoideum collectively give rise to oscillations and waves of cyclic adenosine 3',5'-monophosphate (cAMP) under a wide range of cell density. To date, the systems-level mechanism underlying the robustness is unclear. By using quantitative live-cell imaging, here we show that the magnitude of the cAMP relay response of individual cells is determined by fold change in the extracellular cAMP concentrations. The range of cell density and exogenous cAMP concentrations that support oscillations at the population level agrees well with conditions that support a large fold-change-dependent response at the single-cell level. Mathematical analysis suggests that invariance of the oscillations to density transformation is a natural outcome of combining secrete-and-sense systems with a fold-change detection mechanism.


Assuntos
AMP Cíclico/metabolismo , Dictyostelium/fisiologia , Comunicação Parácrina
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 1): 011927, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867233

RESUMO

All cells derive nutrition by absorbing some chemical and energy resources from the environment; these resources are used by the cells to reproduce the chemicals within them, which in turn leads to an increase in their volume. In this study we introduce a protocell model exhibiting catalytic reaction dynamics, energy metabolism, and cell growth. Results of extensive simulations of this model show the existence of four phases with regard to the rates of both the influx of resources and cell growth. These phases include an active phase with high influx and high growth rates, an inefficient phase with high influx but low growth rates, a quasistatic phase with low influx and low growth rates, and a death phase with negative growth rate. A mean field model well explains the transition among these phases as bifurcations. The statistical distribution of the active phase is characterized by a power law, and that of the inefficient phase is characterized by a nearly equilibrium distribution. We also discuss the relevance of the results of this study to distinct states in the existing cells.


Assuntos
Catálise , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Animais , Biofísica/métodos , Ciclo Celular , Membrana Celular/metabolismo , Proliferação de Células , Simulação por Computador , DNA/genética , Humanos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA