Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 169: 105571, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451345

RESUMO

Antidepressants are used to treat depression and some anxiety disorders, including use in pregnant patients. The pharmacological actions of these drugs generally determine the uptake and metabolism of a series of neurotransmitters, such as serotonin, norepinephrine, or dopamine, along with an increase in BDNF expression. However, many aspects of antidepressant action remain unknown, particularly whether antidepressants interfere with normal neurodevelopment when taken by pregnant women. In order to reveal cellular and molecular implications crucial to the functioning of pathways related to antidepressant effects, we performed an investigation on neuronally differentiating human SH-SY5Y cells. To our knowledge, this is the first time human SH-SY5Y cells in cultures of purely neuronal cells induced by controlled differentiation with retinoic acid are followed by short-term 48-h exposure to 0.1-10 µM escitalopram or venlafaxine. Treatment with antidepressants (1 µM) did not affect the electrophysiological properties of SH-SY5Y cells. However, the percentage of mature neurons exhibiting voltage-gated sodium currents was substantially higher in cultures pre-treated with either antidepressant. After exposure to escitalopram or venlafaxine, we observed a concentration-dependent increase in activity-dependent BDNF promoter IV activation. The assessment of neurite metrics showed significant down-regulation of neurite outgrowth upon exposure to venlafaxine. Identified changes may represent links to molecular processes of importance to depression and be involved in neurodevelopmental alterations observed in postpartum children exposed to antidepressants antenatally.


Assuntos
Escitalopram , Crescimento Neuronal , Cloridrato de Venlafaxina , Criança , Feminino , Humanos , Gravidez , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Cloridrato de Venlafaxina/farmacologia
2.
Exp Neurol ; 337: 113536, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264635

RESUMO

The inability to reliably replicate mitochondrial DNA (mtDNA) by mitochondrial DNA polymerase gamma (POLG) leads to a subset of common mitochondrial diseases associated with neuronal death and depletion of neuronal mtDNA. Defining disease mechanisms in neurons remains difficult due to the limited access to human tissue. Using human induced pluripotent stem cells (hiPSCs), we generated functional dopaminergic (DA) neurons showing positive expression of dopaminergic markers TH and DAT, mature neuronal marker MAP2 and functional synaptic markers synaptophysin and PSD-95. These DA neurons were electrophysiologically characterized, and exhibited inward Na + currents, overshooting action potentials and spontaneous postsynaptic currents (sPSCs). POLG patient-specific DA neurons (POLG-DA neurons) manifested a phenotype that replicated the molecular and biochemical changes found in patient post-mortem brain samples namely loss of complex I and depletion of mtDNA. Compared to disease-free hiPSC-derived DA neurons, POLG-DA neurons exhibited loss of mitochondrial membrane potential, loss of complex I and loss of mtDNA and TFAM expression. POLG driven mitochondrial dysfunction also led to neuronal ROS overproduction and increased cellular senescence. This deficit was selectively rescued by treatment with N-acetylcysteine amide (NACA). In conclusion, our study illustrates the promise of hiPSC technology for assessing pathogenetic mechanisms associated with POLG disease, and that NACA can be a promising potential therapy for mitochondrial diseases such as those caused by POLG mutation.


Assuntos
Acetilcisteína/análogos & derivados , Antioxidantes/uso terapêutico , DNA Polimerase gama/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Doenças Mitocondriais/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/uso terapêutico , Potenciais de Ação , Senescência Celular/genética , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Potenciais Pós-Sinápticos Excitadores , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Canais de Sódio/metabolismo
3.
Front Neurol ; 10: 223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941086

RESUMO

Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs.

4.
Purinergic Signal ; 8(4): 705-13, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22453905

RESUMO

Cannabinoids exert powerful action on various forms of synaptic plasticity. These retrograde messengers modulate GABA and glutamate release from presynaptic terminals by acting on presynaptic CB1 receptors. In particular, they inhibit long-term potentiation (LTP) elicited by electrical stimulation of excitatory pathways in rat hippocampus. Recently, LTP of the field excitatory postsynaptic potential (fEPSP) induced by exogenous ATP has been thoroughly explored. The present study demonstrates that cannabinoids inhibit ATP-induced LTP in hippocampal slices of rat. Administration of 10 µM of ATP led to strong inhibition of fEPSPs in CA1/CA3 hippocampal synapses. Within 40 min after ATP removal from bath solution, robust LTP was observed (fEPSP amplitude comprised 130.1 ± 3.8% of control, n = 10). This LTP never appeared when ATP was applied in addition to cannabinoid receptor agonist WIN55,212-2 (100 nM). Selective CB1 receptor antagonist, AM251 (500 nM), completely abolished this effect of WIN55,212-2. Our data indicate that like canonical LTP elicited by electrical stimulation, ATP-induced LTP is under control of CB1 receptors.


Assuntos
Trifosfato de Adenosina/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Canabinoides/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Receptores Pré-Sinápticos/efeitos dos fármacos , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA