Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 23(1): 297, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316730

RESUMO

BACKGROUND: Routine follow-up of patients hospitalised with COVID-19 is recommended, however due to the ongoing high number of infections this is not without significant health resource and economic burden. In a previous study we investigated the prevalence of, and risk factors for, persistent chest radiograph (CXR) abnormalities post-hospitalisation with COVID-19 and identified a 5-point composite score that strongly predicted risk of persistent CXR abnormality at 12-weeks. Here we sought to validate and refine our findings in an independent cohort of patients. METHODOLOGY: A single-centre prospective study of consecutive patients attending a virtual post-hospitalisation COVID-19 clinic and CXR as part of their standard clinical care between 2nd March - 22nd June 2021. Inpatient and follow-up CXRs were scored by the assessing clinician for extent of pulmonary infiltrates (0-4 in each lung) with complete resolution defined as a follow-up score of zero. RESULTS: 182 consecutive patients were identified of which 31% had persistent CXR abnormality at 12-weeks. Patients with persistent CXR abnormality were significantly older (p < 0.001), had a longer hospital length of stay (p = 0.005), and had a higher incidence of both level 2 or 3 facility admission (level 2/3 care) (p = 0.003) and ever-smoking history (p = 0.038). Testing our composite score in the present cohort we found it predicted persistent CXR abnormality with reasonable accuracy (area under the receiver operator curve [AUROC 0.64]). Refining this score replacing obesity with Age ≥ 50 years, we identify the SHADE-750 score (1-point each for; Smoking history, Higher-level care (level 2/3 admission), Age ≥ 50 years, Duration of admission ≥ 15 days and Enzyme-lactate dehydrogenase (LDH ≥ 750U/L), that accurately predicted risk of persistent CXR abnormality, both in the present cohort (AUROC 0.73) and when retrospectively applied to our 1st cohort (AUROC 0.79). Applied to both cohorts combined (n = 213) it again performed strongly (AUROC 0.75) with all patients with a score of zero (n = 18) having complete CXR resolution at 12-weeks. CONCLUSIONS: In two independent cohorts of patients hospitalised with COVID-19, we identify a 5-point score which accurately predicts patients at risk of persistent CXR abnormality at 12-weeks. This tool could be used by clinicians to identify patients in which radiological follow-up may not be required.


Assuntos
COVID-19 , Humanos , Pessoa de Meia-Idade , SARS-CoV-2 , Estudos Retrospectivos , Estudos Prospectivos , Radiografia Torácica , Hospitalização , L-Lactato Desidrogenase , Fatores de Risco , Reação em Cadeia da Polimerase
2.
Lab Invest ; 102(7): 762-770, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35351966

RESUMO

Multiplexed ion beam imaging by time-of-flight (MIBI-TOF) is a form of mass spectrometry imaging that uses metal labeled antibodies and secondary ion mass spectrometry to image dozens of proteins simultaneously in the same tissue section. Working with the National Cancer Institute's (NCI) Cancer Immune Monitoring and Analysis Centers (CIMAC), we undertook a validation study, assessing concordance across a dozen serial sections of a tissue microarray of 21 samples that were independently processed and imaged by MIBI-TOF or single-plex immunohistochemistry (IHC) over 12 days. Pixel-level features were highly concordant across all 16 targets assessed in both staining intensity (R2 = 0.94 ± 0.04) and frequency (R2 = 0.95 ± 0.04). Comparison to digitized, single-plex IHC on adjacent serial sections revealed similar concordance (R2 = 0.85 ± 0.08) as well. Lastly, automated segmentation and clustering of eight cell populations found that cell frequencies between serial sections yielded an average correlation of R2 = 0.94 ± 0.05. Taken together, we demonstrate that MIBI-TOF, with well-vetted reagents and automated analysis, can generate consistent and quantitative annotations of clinically relevant cell states in archival human tissue, and more broadly, present a scalable framework for benchmarking multiplexed IHC approaches.


Assuntos
Diagnóstico por Imagem , Neoplasias , Anticorpos , Diagnóstico por Imagem/métodos , Humanos , Imuno-Histoquímica , Íons , Espectrometria de Massas/métodos
3.
Cell ; 185(2): 299-310.e18, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063072

RESUMO

Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor to invasive breast cancer (IBC). To understand the changes in the tumor microenvironment (TME) accompanying transition to IBC, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) and a 37-plex antibody staining panel to interrogate 79 clinically annotated surgical resections using machine learning tools for cell segmentation, pixel-based clustering, and object morphometrics. Comparison of normal breast with patient-matched DCIS and IBC revealed coordinated transitions between four TME states that were delineated based on the location and function of myoepithelium, fibroblasts, and immune cells. Surprisingly, myoepithelial disruption was more advanced in DCIS patients that did not develop IBC, suggesting this process could be protective against recurrence. Taken together, this HTAN Breast PreCancer Atlas study offers insight into drivers of IBC relapse and emphasizes the importance of the TME in regulating these processes.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Diferenciação Celular , Estudos de Coortes , Progressão da Doença , Células Epiteliais/patologia , Epitélio/patologia , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Recidiva Local de Neoplasia/patologia , Fenótipo , Análise de Célula Única , Células Estromais/patologia , Microambiente Tumoral
4.
FEBS J ; 289(13): 3770-3788, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35066976

RESUMO

The bacterial heterodimeric ATP-binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug-resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide-binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug-mimetic azido-ethidium. Surprisingly, our analyses of azido-ethidium-labelled PatAB peptides point to ethidium binding in the PatA nucleotide-binding domain, with the azido moiety crosslinked to residue Q521 in the H-like loop of the degenerate nucleotide-binding site. Investigation into this compound and residue's role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium-dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium-like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non-competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide-binding domains.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Streptococcus pneumoniae , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Etídio/metabolismo , Hidrólise , Nucleotídeos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
5.
J Pharm Sci ; 103(10): 3287-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042198

RESUMO

Many weakly basic amine-containing drugs are known to be extensively sequestered in acidic lysosomes by an ion trapping-type mechanism. The entrapment of drugs in lysosomes has been shown to influence drug activity, cancer cell selectivity, and pharmacokinetics and can cause the hyperaccumulation of various lipids associated with lysosomes. In this work, we have investigated the prolonged time-dependent effects of drugs on lysosomal properties. We have evaluated two amine-containing drugs with intermediate (propranolol) and high (halofantrine) relative degrees of lipophilicity. Interestingly, the cellular accumulation kinetics of these drugs exhibited a biphasic characteristic at therapeutically relevant exposure levels with an initial apparent steady-state occurring at 2 days followed by a second stage of enhanced accumulation. We provide evidence that this secondary drug accumulation coincides with the nuclear localization of transcription factor EB, a master regulator of lysosome biogenesis, and the appearance of an increased number of smaller and lipid-laden lysosomes. Collectively, these results show that hydrophobic lysosomotropic drugs can induce their own cellular accumulation in a time-dependent fashion and that this is associated with an expanded lysosomal volume. These results have important therapeutic implications and may help to explain sources of variability in drug pharmacokinetic distribution and elimination properties observed in vivo.


Assuntos
Fibroblastos/efeitos dos fármacos , Lisossomos/química , Aminas/farmacologia , Células Cultivadas , Fibroblastos/citologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA