Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 247: 114254, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334344

RESUMO

Cadmium ion (Cd2+) exposure has been reported to associate with the prevalence of dyslipidemia, and contribute to the initiation and progression of nonalcoholic fatty liver disease (NAFLD). However, Cd2+ exposure perturbed specific metabolic pathways and underlying mechanisms are still unclear. In the present study, through lipidomics analyses of differential metabolites in serum between the Cd2+-exposed mice and the control group, 179 differential metabolites were identified, among which phosphatidylcholines (PCs) accounted for 49 % metabolites. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment assay indicates that PCs participate in the metabolic pathways, including the Arachidonic Acid (AA) metabolism, which also could be potential NAFLD biomarkers. Moreover, in vivo and in vitro results suggested that Cd2+ exposure induced PC synthesis and remodeling, and increased AA level by promoting fatty acid desaturase 1 (FADS1) to catalyze synthesis process instead of cytosolic phospholipase A2 (cPLA2) mediated release pathway. Inhibition of FADS1 by T3364366 could reverse Cd-induced AA, prostaglandin E2 (PGE2) and triglyceride (TAG) levels, and it also reduce cisplatin resistance in HepG2 cells. This study provides new evidence of Cd2+-induced dyslipidemia and reveals underlying molecular mechanism involved in liver dysfunction of Cd2+ exposure.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Fosfatidilcolinas , Camundongos , Animais , Ácido Araquidônico , Cádmio/toxicidade , Metabolismo dos Lipídeos , Dessaturase de Ácido Graxo Delta-5
2.
Microbiome ; 10(1): 160, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175956

RESUMO

BACKGROUND: Although the lack of estrogen receptor ß (ERß) is a risk factor for the development of inflammatory bowel disease (IBD) and psychiatric disorders, the underlying cellular and molecular mechanisms are not fully understood. Herein, we revealed the role of gut microbiota in the development of IBD and related anxiety-like behavior in ERß-deficient mice. RESULTS: In response to dextran sodium sulfate (DSS) insult, the ERß knockout mice displayed significant shift in α and ß diversity in the fecal microbiota composition and demonstrated worsening of colitis and anxiety-like behaviors. In addition, DSS-induced colitis also induced hypothalamic-pituitary-adrenal (HPA) axis hyperactivity in ERß-deficient mice, which was associated with colitis and anxiety-like behaviors. In addition, RNA sequencing data suggested that ErbB4 might be the target of ERß that is involved in regulating the HPA axis hyperactivity caused by DSS insult. Gut microbiota remodeling by co-housing showed that both the colitis and anxiety-like behaviors were aggravated in co-housed wild-type mice compared to single-housed wild-type mice. These findings suggest that gut microbiota play a critical role in mediating colitis disease activity and anxiety-like behaviors via aberrant neural processing within the gut-brain axis. CONCLUSIONS: ERß has the potential to inhibit colitis development and anxiety-like behaviors via remodeling of the gut microbiota, which suggests that ERß is a promising therapeutic target for the treatment of IBD and related anxiety-like behaviors. Video Abstract.


Assuntos
Colite , Receptor beta de Estrogênio , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Ansiedade , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Hipófise-Suprarrenal/metabolismo
3.
Chem Biol Interact ; 348: 109649, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34516972

RESUMO

Cadmium (Cd) exposure induced lipid metabolic disorder with changes in lipid composition, as well as triglyceride (TG) levels. Liver is the main organ maintaining body TG level and previous studies suggested that Cd exposure might increase TG synthesis but reduce TG uptake in liver. However, the effects of Cd exposure on TG secretion from liver and underlying mechanism are still unclear. In the present study, the data revealed that Cd exposure increased TG levels in the HepG2 cells and the cultured medium by increasing the expression of microsomal triglyceride transfer protein (MTTP), which was abrogated by siRNA knockdown of MTTP. MTTP was synergistically accumulated after Cd exposure or treated with proteasome inhibitor MG132 and lysosome inhibitor chloroquine (CQ), which suggested the Cd increased MTTP protein stability by inhibiting both the proteasome and the lysosomal protein degradation pathways. In addition, our results demonstrated that Cd exposure inhibited the lysosomal acidic degradation pathway through disrupting endoplastic reticulum (ER) Ca2+ homeostasis. Cd-induced MTTP protein and TG levels were significantly reduced by pretreatments of BAPTA/AM chelation of intracellular Ca2+, 2-APB inhibition of ER Ca2+ release channel inositol 1,4,5-trisphosphate receptor (IP3R) and CDN1163 activation of ER Ca2+ reuptake pump sarcoplasmic reticulum Ca2+-ATPase (SERCA). These results suggest that Cd-induced ER Ca2+ release impaired the lysosomal acidity, which associated with MTTP protein accumulation and contributed to increased TG levels.


Assuntos
Cádmio/farmacologia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Triglicerídeos/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Células Hep G2 , Humanos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
Ecotoxicol Environ Saf ; 217: 112256, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901779

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has been the most common chronic liver disease in the world, including the developing countries. NAFLD is metabolic disease with significant lipid deposition in the hepatocytes of the liver, which is usually associated with oxidative stress, inflammation and fibrogenesis, and insulin resistance. Progressive NAFLD can develop into non-alcoholic steatohepatitis (NASH) or hepatocellular carcinoma. The current evidence proposes that environmental pollutants promote development and progression of NAFLD, and autophagy plays a vital role but is multifactorial affected in NAFLD. In this review, we analyzed on the regulations of common environmental pollutants on autophagy in NAFLD. To clarify the involved roles of autophagy, we discussed the dysregulation of autophagy by environmental pollutants in adipose tissue and gut, and their interactions with liver, as well as epigenetic regulation on autophagy by environmental pollutants. Furthermore, protective roles of potential therapeutic treatments on the multiple-hits of autophagy in NAFLD were descripted.


Assuntos
Autofagia/fisiologia , Poluentes Ambientais/toxicidade , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Tecido Adiposo/metabolismo , Carcinoma Hepatocelular/metabolismo , Poluentes Ambientais/metabolismo , Epigênese Genética , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Estresse Oxidativo
5.
Ecotoxicol Environ Saf ; 207: 111480, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254385

RESUMO

Environmental or occupational exposure of Cadmium (Cd) is concerned to be a threat to human health. The kidney is main target of Cd accumulation, which increases the risk of renal cell carcinoma (RCC). In addition, low content of Cd had been determined in kidney cancer, however, the roles of presence of Cd in renal tumors progression are still unclear. The present study is proposed to determine the effect of low-dose Cd exposure on the renal cancer cells and aimed to clarify the underlying mechanisms. The cell viability, cytotoxicity, and the migratory effect of low-dose Cd on the renal cancer cells were detected. Moreover, the roles of reactive oxygen species (ROS), Ca2+, and cyclic AMP (cAMP)/protein kinase A (PKA)-cyclooxygenase2 (COX2) signaling, as well as COX2 catalytic product prostaglandin E2 (PGE2) on cell migration and invasion were identified. Our results suggested that low dose Cd exposure promoted migration of renal cancer Caki-1 cells, which was not dependent on Cd-induced ROS and intracellular Ca2+ levels. Cd exposure induced cAMP/PKA-COX2, which mediated cell migration and invasion, and decreased expressions of epithelial-mesenchymal transition (EMT) marker, E-cadherin, but increased expressions of N-cadherin and Vimentin. Moreover, Cd-induced secretion of PGE2 feedback on activation of cAMP/PKA-COX2 signaling, also promoted EMT, migration and invasion of renal cancer Caki-1 cells. This study might contribute to understanding of the mechanism of Cd-induce progression of renal cancer and future studies on the prevention and therapy of renal cell carcinomas.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Transição Epitelial-Mesenquimal/fisiologia , Antígenos CD , Caderinas/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Renais , Transdução de Sinais/efeitos dos fármacos , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA