Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Cell Rep ; 43(4): 114088, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602878

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) features an immunosuppressive tumor microenvironment (TME) that resists immunotherapy. Tumor-associated macrophages, abundant in the TME, modulate T cell responses. Bone marrow stromal antigen 2-positive (BST2+) macrophages increase in KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse models during PDAC progression. However, their role in PDAC remains elusive. Our findings reveal a negative correlation between BST2+ macrophage levels and PDAC patient prognosis. Moreover, an increased ratio of exhausted CD8+ T cells is observed in tumors with up-regulated BST2+ macrophages. Mechanistically, BST2+ macrophages secrete CXCL7 through the ERK pathway and bind with CXCR2 to activate the AKT/mTOR pathway, promoting CD8+ T cell exhaustion. The combined blockade of CXCL7 and programmed death-ligand 1 successfully decelerates tumor growth. Additionally, cGAS-STING pathway activation in macrophages induces interferon (IFN)α synthesis leading to BST2 overexpression in the PDAC TME. This study provides insights into IFNα-induced BST2+ macrophages driving an immune-suppressive TME through ERK-CXCL7 signaling to regulate CD8+ T cell exhaustion in PDAC.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Proteínas Ligadas por GPI , Interferon-alfa , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Antígenos CD/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Tolerância Imunológica , Interferon-alfa/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
3.
J Chromatogr A ; 1714: 464560, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38070304

RESUMO

The Fourier deconvolution ion mobility spectrometer (FDIMS) offers multiplexing and improves the resolving power and signal-to-noise ratio. To evaluate the FDIMS as a detector for gas chromatography for the analysis of complex samples, we connected a drift tube ion mobility spectrometer to a commercial gas chromatograph and compared the performance including resolving power, sensitivity, and linear range using 2,6-di­tert-butylpyridine. Mixed standards were also injected into the tandem system to evaluate the performance under optimized conditions. A complex plant extract sample used as natural flavoring was investigated using the resulting system. The results show that the instrument implemented with the Fourier deconvolution multiplexing method demonstrated higher performance over the traditional signal averaging method including higher resolving power, better limit of detection, and wider linear range for a variety of compounds and natural plant extract flavorings.


Assuntos
Extratos Vegetais , Cromatografia Gasosa/métodos
5.
BMC Plant Biol ; 23(1): 557, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957587

RESUMO

BACKGROUND: Artificial induction of polyploidy is the most common and effective way to improve the biological properties of Populus and develop new varieties of this tree. In this study, in order to confirm and expand earlier findings, we established a protocol using colchicine and based on an efficient shoot regeneration system of leaf blades to induce tetraploidy in vitro in three genotypes from diploid Populus hopeiensis. The stomatal characteristics, leaf blade size, and growth were evaluated for diploids and tetraploids of three genotypes. RESULTS: We found that genotype, preculture duration, colchicine concentration, and colchicine exposure time had highly significant effects on the tetraploid induction rate. The optimal protocol for inducing tetraploidy in P. hopeiensis was to preculture leaf blades for 7 days and then treat them for 4 days with 40 mg/L colchicine. The tetraploid induction rates of genotypes BT1, BT3, and BT8 were 21.2, 11.4 and 16.7%, respectively. A total of 136 tetraploids were identified by flow cytometry analysis and somatic chromosome counting. The stomatal length, width, and density of leaf blades significantly differed between diploid and tetraploid plants. Compared with their diploid counterparts, the tetraploids produced larger leaf blades and had a slower growth rate. Our findings further document the modified morphological characteristics of P. hopeiensis following whole-genome duplication (e.g., induced tetraploidy). CONCLUSIONS: We established a protocol for in vitro induction of tetraploidy from diploid leaf blades treated with colchicine, which can be applied to different genotypes of P. hopeiensis.


Assuntos
Populus , Tetraploidia , Populus/genética , Poliploidia , Diploide , Variação Biológica da População , Colchicina/farmacologia
6.
Quant Imaging Med Surg ; 13(9): 5877-5886, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37711799

RESUMO

Background: EAS index is reported to be an adjunctive tool for risk stratification in addition to left ventricular ejection fraction (LVEF). This study aimed to verify the predictive value of EAS index among coronary artery disease (CAD) patients with different cardiac systolic function levels. Methods: A total of 477 patients with obstructive CAD were included in the exploratory analysis of a prospective cohort between October 2017 and January 2018 at Guangdong Provincial People's Hospital. EAS index, e'/(a' × s'), is a novel parameter assessed by tissue Doppler imaging (TDI) indicating combined diastolic and systolic performance. Any occurrence of major adverse cardiovascular event (MACE) was recorded, including first onset of myocardial infarction, stroke, readmission for heart failure, coronary revascularization, or cardiovascular death that occurred within 6 months of the first admission. Kaplan-Meier survival and Cox regression analyses were applied to testify the predictive value of EAS index for cardiovascular outcome. Results: A total of 415 patients (87.2%) completed the follow-up (median, 25.9 months) and experienced 101 (24.3%) MACEs, 17 (4.0%) deaths, and 139 (33.4%) composite events. Elevated EAS index was significantly associated with a higher incidence of MACE, even after adjustment for age, sex, body mass index, N-terminal pro brain natriuretic peptide, high-sensitivity troponin T, high-density lipoprotein, stenosis degree, and other TDI parameters [Model 3, hazard ratio: 1.81, 95% confidence interval (CI): 1.15-2.85]. For different levels of cardiac function, Kaplan-Meier survival analysis revealed that elevated EAS index was associated with higher MACE incidence only in patients with LVEF ≥50% (P<0.05). Conclusions: EAS index is an independent predictor of MACE in patients with obstructive CAD, which could be utilized as a tool for risk stratification in CAD patients or incorporated into a prediction model to improve efficacy.

8.
Environ Sci Pollut Res Int ; 30(33): 81008-81018, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37310601

RESUMO

Existing studies could not separate the effects of heavy metal exposure on cardiovascular disease (CVD) risk from those caused by physical activity (PA). The possible interactive effect of heavy metal exposure and PA on the risk of CVD remains still unknown. We enrolled a total of 12,280 participants in 2007-2018 cycles of the U.S. National Health and Nutrition Examination Survey (NHANES) and discovered that both low blood concentrations of Cd and Pb were positively correlated with increased prevalence of CVD and subtypes, with a stronger association for blood Cd than Pb. Negative dose-response relationships between PA and the prevalence of CVD and subtypes were identified. Participants with inactive and active PA had lower risk of CVD than those having no PA, with multivariate adjusted ORs 0.8 (95% CI: 0.69, 0.94) and 0.76 (95% CI: 0.68, 0.85), respectively. The only evidence for negative interaction between regular PA and blood Cd concentrations was found with regard to the prevalence of CVD and subtypes, indicating that regular PA could well modify the adverse effect of blood Cd on CVD risk. We demonstrate for the first time to date that PA may have a beneficial effect against the hazardous impact of Cd exposure on elevated CVD risk, emphasizing the necessity to promote a healthy lifestyle with active PA.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/complicações , Inquéritos Nutricionais , Cádmio , Chumbo , Exercício Físico
9.
Adv Healthc Mater ; 12(21): e2300102, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36988195

RESUMO

Cell signal transduction mediated by cell surface ligand-receptor is crucial for regulating cell behavior. The oligomerization or hetero-aggregation of the membrane receptor driven by the ligand realizes the rearrangement of apoptotic signals, providing a new ideal tool for tumor therapy. However, the construction of a stable model of cytomembrane receptor aggregation and the development of a universal anti-tumor therapy model on the cellular surface remain challenging. This work describes the construction of a "multi-catcher" flexible structure GC-chol-apt-cDNA with a suitable integration of the oligonucleotide aptamer (apt) and cholesterol (chol) on a polymer skeleton glycol chitosan (GC), for the regulation of the nucleolin cluster through strong polyvalent binding and hydrophobic membrane anchoring on the cell surface. This oligonucleotide aptamer shows nearly 100-fold higher affinity than that of the monovalent aptamer and achieves stable anchoring to the plasma membrane for up to 6 h. Moreover, it exerts a high tumor inhibition both in vitro and in vivo by activating endogenous mitochondrial apoptosis pathway through the cluster of nucleolins on the cell membrane. This multi-catcher nano-platform combines the spatial location regulation of cytomembrane receptors with the intracellular apoptotic signaling cascade and represents a promising strategy for antitumor therapy.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Polímeros/metabolismo , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Membrana Celular/metabolismo , Receptores de Superfície Celular/metabolismo , Oligonucleotídeos , Linhagem Celular Tumoral , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Nucleolina
10.
Biomed Pharmacother ; 153: 113381, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076476

RESUMO

This study aims to explore the effect of Psoralen on myelosuppression, and investigating the mechanism involved in. The mesenchymal stem cells (MSCs) were treated with CTX to construct cell model of myelosuppression, and then with APP knockdown or overexpression transfection. Cell proliferation, cell apoptosis, bone growth factors, and hematopoietic growth factors were identified. The animal model of myelosuppression syndrome was established by intraperitoneal injection of cyclophosphamide (CTX) into C57BL/6 mice, and then with APP knockdown transfection. The effect of Psoralen on myelosuppression mice with APP knockdown was explored, including observin the number of hematopoietic stem cells and bone marrow MSCs, detecting the degree of osteoporosis and the number of osteoclasts. The expression of phosphorylation-amyloid precursor protein (p-APP), bone growth factors, and hematopoietic growth factors were also examined. We found that CTX treatment inhibited cell proliferation, induced cell apoptosis, promoted p-APP/APP, and inhibited the expression of aph-1 homolog A (APH-1α), presenilin enhancer-2 (PEN-2), the receptor of advanced glycation endproducts (RAGE). Psoralen pretreatment effectively promoted cell proliferation, suppressed cell apoptosis, inhibited p-APP/APP and stimulated the expression of APH-1α, PEN-2, RAGE compared with CTX treatment. After APP knockdown, cell proliferation was inhibited, and cell apoptosis was increased. The release of bone growth factors and hematopoietic growth factors was decreased. Psoralen pretreatment could reverse the effect of APP knockdown on MSCs and myelosuppression mice. In conclusion, Psoralen treatment inhibited cell apoptosis and regulated bone growth factors and hematopoietic growth factors in myelosuppression syndrome by suppressing the phosphorylation of APP.


Assuntos
Precursor de Proteína beta-Amiloide , Doenças da Medula Óssea , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ficusina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
11.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743139

RESUMO

Loss of heterozygosity (LOH) for KRAS, in which a wild-type KRAS allele is progressively lost, promotes invasive and migratory abilities of pancreatic ductal adenocarcinoma (PDAC) cells and tissues. Moreover, the occurrence of KrasG12D-LOH activates nonclassical glutamine metabolism, which is related to the malignant behavior of PDAC cells. Herein, we aim to demonstrate the regulatory link between hypoxia-inducible factor-2α (HIF-2α) and glutamine metabolism that mediates malignant phenotypes in KrasG12D-LOH PDAC cells. HIF-2α-shRNA knockdown lentivirus transfection and metabolite analysis were performed in KrasG12D-LOH and KrasG12D cell lines, respectively. Cell proliferation, migration, and invasion were examined using Cell Counting Kit-8, colony formation, and Transwell assays. Cell cycle phase and apoptosis were determined using flow cytometry. Western blotting and real-time quantitative PCR were also performed. Additionally, a subcutaneous xenograft mouse model was established. LOH stimulated HIF-2α activity and transactivated c-Myc, which has a central regulatory effect on glutamine metabolism independent of hypoxia. Meanwhile, HIF-2α silencing repressed KrasG12D-LOH PDAC cell proliferation, invasion, and migration. HIF-2α knockdown inhibited glutamine uptake and GOT1 expression via a c-Myc-dependent pathway. Collectively, KrasG12D-LOH can activate HIF-2α to regulate c-Myc-mediated glutamine metabolism and promote malignant phenotypes. Moreover, targeting HIF-2α-c-Myc regulated nonclassical glutamine metabolism, providing a new therapeutic perspective for KrasG12D-LOH PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Glutamina/metabolismo , Humanos , Hipóxia , Perda de Heterozigosidade , Camundongos , Neoplasias Pancreáticas/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
12.
J Photochem Photobiol B ; 233: 112496, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689932

RESUMO

The application of nanostructures to design fluorescence resonance energy transfer (FRET) based sensing platforms has been greatly concerned with the demand for sensitive and selective detection of biomolecules. Here, a novel sensitive turn-on fluorescence strategy based on the FRET mechanism has been designed for hyaluronidase (HAase) detection through the modulation of Cu2-xSe@HA-Rh6G nanoprobe fabricated by self-assembly of rhodamine 6G (Rh6G) together with Cu2-xSe@HA nanoparticles through electrostatic adsorption. The Cu2-xSe@HA had extensive localized surface plasma resonance (LSPR) absorption in the wide range of ultraviolet (UV) to near-infrared (NIR) wavelengths and showed good light capture characteristics, which can be acted as good acceptors in the FRET interactions with Rh6G, inducing its efficient fluorescence quenching. In the presence of HAase, the FRET process was disrupted and the fluorescence signal was recovered. In the range of 0.1-10.0 U/mL, the fluorescence recovery of Rh6G showed a good linear relationship with the concentration of HAase, and the detection limit was 0.06 U/mL. The sensing platform has been used for HAase detection in real urine samples and cancer cells imaging.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Hialuronoglucosaminidase , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Ácido Hialurônico/química , Hialuronoglucosaminidase/metabolismo , Rodaminas/química
13.
Plant Physiol ; 189(4): 2110-2127, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567496

RESUMO

The formation of diploid gametes through chromosome doubling is a major mechanism of polyploidization, diversification, and speciation in plants. Unfavorable climate conditions can induce or stimulate the production of diploid gametes during meiosis. Here, we demonstrated that heat shock stress (38°C for 3 or 6 h) induced 2n pollen formation, and we generated 42 triploids derived from heat shock-induced 2n pollen of Populus canescens. Meiotic analysis of treated pollen mother cells revealed that induced 2n pollen originated from the complete loss of meiosis II (MII). Among the 42 triploids, 38 triploids derived from second division restitution (SDR)-type 2n pollen and 4 triploids derived from first division restitution-type 2n pollen were verified using simple sequence repeats (SSR) molecular markers. Twenty-two differentially expressed genes related to the cell cycle were identified and characterized by expression profile analysis. Among them was POPTR_0002s08020g (PtCYCA1;2), which encodes a type A Cyclin CYCA1;2 that is required for the meiosis I (MI) to MII transition. After male flower buds were exposed to heat shock, a significant reduction was detected in PtCYCA1;2 expression. We inferred that the failure of MI-to-MII transitions might be associated with downregulated expression of PtCYCA1;2, leading to the formation of SDR-type 2n pollen. Our findings provide insights into mechanisms of heat shock-induced 2n pollen formation in a woody plant and verify that sensitivity to environmental stress has evolutionary importance in terms of polyploidization.


Assuntos
Meiose , Triploidia , Diploide , Resposta ao Choque Térmico/genética , Meiose/genética , Pólen/genética
14.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439169

RESUMO

Systemic therapies for pancreatic ductal adenocarcinoma (PDAC) remain unsatisfactory. Clinical prognosis is particularly poor for tumor subtypes with activating aberrations in the MYC pathway, creating an urgent need for novel therapeutic targets. To unbiasedly find MYC-associated epigenetic dependencies, we conducted a drug screen in pancreatic cancer cell lines. Here, we found that protein arginine N-methyltransferase 5 (PRMT5) inhibitors triggered an MYC-associated dependency. In human and murine PDACs, a robust connection of MYC and PRMT5 was detected. By the use of gain- and loss-of-function models, we confirmed the increased efficacy of PRMT5 inhibitors in MYC-deregulated PDACs. Although inhibition of PRMT5 was inducing DNA damage and arresting PDAC cells in the G2/M phase of the cell cycle, apoptotic cell death was executed predominantly in cells with high MYC expression. Experiments in primary patient-derived PDAC models demonstrated the existence of a highly PRMT5 inhibitor-sensitive subtype. Our work suggests developing PRMT5 inhibitor-based therapies for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pancreáticas
15.
EMBO Mol Med ; 14(4): e14876, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35119792

RESUMO

Despite the advance and success of precision oncology in gastrointestinal cancers, the frequency of molecular-informed therapy decisions in pancreatic ductal adenocarcinoma (PDAC) is currently neglectable. We present a longitudinal precision oncology platform based on functional model systems, including patient-derived organoids, to identify chemotherapy-induced vulnerabilities. We demonstrate that treatment-induced tumor cell plasticity in vivo distinctly changes responsiveness to targeted therapies, without the presence of a selectable genetic marker, indicating that tumor cell plasticity can be functionalized. By adding a mechanistic layer to precision oncology, adaptive processes of tumors under therapy can be exploited, particularly in highly plastic tumors, such as pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Humanos , Organoides/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Medicina de Precisão , Neoplasias Pancreáticas
16.
Pancreatology ; 22(2): 294-303, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35120820

RESUMO

BACKGROUND & AIMS: Sca-1 is a surface marker for murine hematopoietic stem cells (HSCs) and type-I interferon is a key regulator for Lin-Sca-1+ HSCs expansion through Ifnar/Stat-1/Sca-1-signaling. In this study we aimed to characterize the role and regulation of Sca-1+ cells in pancreatic regeneration. METHODS: To characterize Sca-1 in vivo, immunohistochemistry and immunofluorescence staining of Sca-1 was conducted in normal pancreas, in cerulein-mediated acute pancreatitis, and in Kras-triggered cancerous lesions. Ifnar/Stat-1/Sca-1-signaling was studied in type-I IFN-treated epithelial explants of adult wildtype, Ifnar-/-, and Stat-1-/- mice. Sca-1 induction was analyzed by gene expression and FACS analysis. After isolation of pancreatic epithelial Lin-Sca-1+cells, pancreatosphere-formation and immunofluorescence-assays were carried out to investigate self-renewal and differentiation capabilities. RESULTS: Sca-1+ cells were located in periacinar and periductal spaces and showed an enrichment during cerulein-induced acute pancreatitis (23.2/100 µm2 ± 4.9 SEM) and in early inflammation-mediated carcinogenic lesions of the pancreas of KrasG12D mice (35.8/100 µm2 ± SEM 1.9) compared to controls (3.6/100 µm2 ± 1.3 SEM). Pancreatic Lin-Sca-1+ cells displayed a small population of 1.46% ± 0.12 SEM in FACS. In IFN-ß treated pancreatic epithelial explants, Sca-1 expression was increased, and Lin-Sca-1+ cells were enriched in vitro (from 1.49% ± 0.36 SEM to 3.85% ± 0.78 SEM). Lin-Sca-1+ cells showed a 12 to 51-fold higher capacity for clonal self-renewal compared to Lin-Sca-1- cells and generated cells express markers of the acinar and ductal compartment. CONCLUSIONS: Pancreatic Sca-1+ cells enriched during parenchymal damage showed a significant capacity for cell renewal and in vitro plasticity, suggesting that corresponding to the type I interferon-dependent regulation of Lin-Sca-1+ hematopoietic stem cells, pancreatic Sca-1+ cells also employ type-I-interferon for regulating progenitor-cell-homeostasis.


Assuntos
Plasticidade Celular , Pancreatite , Doença Aguda , Animais , Antígenos Ly/análise , Antígenos Ly/genética , Antígenos Ly/metabolismo , Células Epiteliais , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia
18.
Acta Pharmacol Sin ; 43(3): 724-734, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34117368

RESUMO

Hepatocellular carcinoma (HCC), the most prevalent liver cancer, is considered one of the most lethal malignancies with a dismal outcome mainly due to frequent intrahepatic and distant metastasis. In the present study, we demonstrated that oroxylin A, a natural product extracted from Scutellaria radix, significantly inhibits transforming growth factor-beta1 (TGF-ß1)-induced epithelial-mesenchymal transition (EMT) and metastasis in HCC. Oroxylin A blocked the TGF-ß1/Smad signaling via upregulating the non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) expression. Oroxylin A promoted NAG-1 transcription by regulating the acetylation of CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor that binds to the NAG-1 promoter. In terms of the underlying mechanism, oroxylin A may interact with histone deacetylase 1 (HDAC1) by forming hydrogen bonds with GLY149 residue and induce proteasome-mediated degradation of HDAC1 subsequently impairing HDAC1-mediated deacetylation of C/EBPß and promoting the expression of NAG-1. Taken together, our findings revealed a previously unknown tumor-suppressive mechanism of oroxylin A. Oroxylin A should be further investigated as a potential clinical candidate for inhibiting HCC metastasis.


Assuntos
Carcinoma Hepatocelular/patologia , Flavonoides/farmacologia , Fator 15 de Diferenciação de Crescimento/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Fator de Ligação a CCAAT/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Histona Desacetilase 1/efeitos dos fármacos , Humanos , Proteínas Smad/efeitos dos fármacos , Fator de Crescimento Transformador beta1/efeitos dos fármacos
19.
Bioorg Chem ; 119: 105505, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838332

RESUMO

Targeted protein degradation offers new opportunities to inactivate cancer drivers and has successfully entered the clinic. Ways to induce selective protein degradation include proteolysis targeting chimera (PROTAC) technology and immunomodulatory (IMiDs) / next-generation Cereblon (CRBN) E3 ligase modulating drugs (CELMoDs). Here, we aimed to develop a MYC PROTAC based on the MYC-MAX dimerization inhibitor 10058-F4 derivative 28RH and Thalidomide, called MDEG-541. We show that a subgroup of gastrointestinal cancer cell lines and primary patient-derived organoids are MDEG-541 sensitive. Although MYC expression was regulated in a CRBN-, proteasome- and ubiquitin-dependent manner, we provide evidence that MDEG-541 induced the degradation of CRBN neosubstrates, including G1 to S phase transition 1/2 (GSPT1/2) and the Polo-like kinase 1 (PLK1). In sum, we have established a CRBN-dependent degrader of relevant cancer targets with activity in gastrointestinal cancers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Gastrointestinais/tratamento farmacológico , Talidomida/farmacologia , Tiazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Talidomida/síntese química , Talidomida/química , Tiazóis/síntese química , Tiazóis/química , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
20.
Eur J Med Chem ; 227: 113953, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34731760

RESUMO

As epigenetic readers, bromodomain and extra-terminal domain (BET) family proteins bind to acetylated-lysine residues in histones and recruit protein complexes to promote transcription initiation and elongation. Inhibition of BET bromodomains by small molecule inhibitors has emerged as a promising therapeutic strategy for cancer. Herein, we describe our efforts toward the discovery of a novel series of 1-(5-(1H-benzo[d]imidazole-2-yl)-2,4-dimethyl-1H-pyrrol-3-yl)ethan-1-one derivatives as BET inhibitors. Intensive structural modifications led to the identification of compound 35f as the most active inhibitor of BET BRD4 with selectivity against BET family proteins. Further biological studies revealed that compound 35f can arrest the cell cycle in G0/G1 phase and induce apoptosis via decreasing the expression of c-Myc and other proteins related to cell cycle and apoptosis. More importantly, compound 35f showed favorable pharmacokinetic properties and antitumor efficacy in MV4-11 mouse xenograft model with acceptable tolerability. These results indicated that BET inhibitors could be potentially used to treat hematologic malignancies and some solid tumors.


Assuntos
Álcoois/farmacologia , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Pirróis/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Álcoois/síntese química , Álcoois/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Benzimidazóis/síntese química , Benzimidazóis/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA