Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Phytomedicine ; 123: 155174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039904

RESUMO

BACKGROUND: Banxia Xiexin decoction (BXD) is a traditional Chinese medicine with anti-colorectal cancer (CRC) activity. However, its bioactive constituents and its mechanism of action remain unclear. Herein, we explored the mechanism of action of BXD against CRC using a network pharmacology approach. METHODS: First, the targets of the main chemical components of BXD were predicted and collected through a database, and the intersection of compound targets and disease targets was obtained. Subsequently, protein-protein interaction network analysis, Gene Ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed to explore the potential mechanisms underlying the effects of BXD on CRC. Finally, a CRC cell model and a CRC xenograft model in nude mice were utilized to further determine the mechanism of action. RESULTS: A compound-therapeutic target network of BXD was constructed, revealing 146 cellular targets of BXD. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling axis was identified as the main target of BXD. Using in vitro and in vivo models, the activity of BXD against CRC was found to be mediated through ferritinophagy by targeting the PI3K/AKT/mTOR axis, leading to intracellular iron accumulation, reactive oxygen species activation, and finally ferroptosis. CONCLUSIONS: Through the application of network pharmacology and in vitro/in vivo validation experiments, we discovered that BXD exerts anti-CRC effects via the ferritinophagy pathway. Furthermore, we elucidated the potential mechanism underlying its induction of ferritinophagy. These findings demonstrate the significant potential of traditional drugs in managing CRC and support their wider clinical application in combination chemotherapy, targeted therapy, and immunotherapy.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Animais , Camundongos , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos Nus , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Fosfatidilinositol 3-Quinase , Serina-Treonina Quinases TOR , Neoplasias Colorretais/tratamento farmacológico , Simulação de Acoplamento Molecular , Mamíferos
2.
J Immunol Res ; 2023: 4319551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844438

RESUMO

Objective: This study is aimed at exploring the effect of Qinghua Jianpi Recipe on preventing colon polyp recurrence and inhibiting the progress of "inflammatory cancer transformation." And another goal is to explore the changes of intestinal flora structure and intestinal inflammatory (immune) microenvironment of mice with colon polyps treated by Qinghua Jianpi Recipe and to clarify its mechanism. Methods: Clinical trials were conducted to confirm the therapeutic effect of Qinghua Jianpi Recipe on patients with inflammatory bowel disease. The inhibitory effect of Qinghua Jianpi Recipe on "inflammatory cancer transformation" of colon cancer was confirmed by an adenoma canceration mouse model. Histopathological examination was used to evaluate the effects of Qinghua Jianpi Recipe on intestinal inflammatory state, adenoma number, and pathological changes of adenoma model mice. The changes of inflammatory indexes in intestinal tissue were tested by ELISA. Intestinal flora was detected by 16S rRNA high-throughput sequencing. Short-chain fatty acid metabolism in the intestine was analyzed by targeted metabolomics. Network pharmacology analysis of possible mechanism of Qinghua Jianpi Recipe on colorectal cancer was performed. Western blot was used to detect the protein expression of the related signaling pathways. Results: Qinghua Jianpi Recipe can significantly improve intestinal inflammation status and function in patients with inflammatory bowel disease. Qinghua Jianpi Recipe could significantly improve the intestinal inflammatory activity and pathological damage of adenoma model mice and reduce the number of adenoma. Qinghua Jianpi Recipe significantly increased the levels of Peptostreptococcales_Tissierellales, NK4A214_group, Romboutsia, and other intestinal flora after intervention. Meanwhile, the treatment group of Qinghua Jianpi Recipe could reverse the changes of short-chain fatty acids. Network pharmacology analysis and experimental studies showed that Qinghua Jianpi Recipe inhibited the "inflammatory cancer transformation" of colon cancer by regulating intestinal barrier function-related proteins, inflammatory and immune-related signaling pathways, and free fatty acid receptor 2 (FFAR2). Conclusion: Qinghua Jianpi Recipe can improve the intestinal inflammatory activity and pathological damage of patient and adenoma cancer model mice. And its mechanism is related to the regulation of intestinal flora structure and abundance, short-chain fatty acid metabolism, intestinal barrier function, and inflammatory pathways.


Assuntos
Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Doenças Inflamatórias Intestinais , Camundongos , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , RNA Ribossômico 16S , Doenças Inflamatórias Intestinais/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Adenoma/tratamento farmacológico , Microambiente Tumoral
3.
J Clin Transl Hepatol ; 11(1): 26-37, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36406329

RESUMO

Background and Aims: Naringenin is an anti-inflammatory flavonoid that has been studied in chronic liver disease. The mechanism specific to its antifibrosis activity needs further investigation This study was to focused on the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) pathway in hepatic stellate cells and clarified the antifibrosis mechanism of naringenin. Methods: The relationship between the cGAS-stimulator of interferon genes (STING) pathway and liver fibrosis was analyzed using the Gene Expression Omnibus database. Histopathology, immunohistochemistry, fluorescence staining, Western blotting and polymerase chain reaction were performed to assess gene and protein expression levels associated with the cGAS pathway in clinical liver tissue samples and mouse livers. Molecular docking was performed to evaluate the relationship between naringenin and cGAS, and western blotting was performed to study the expression of inflammatory factors downstream of cGAS in vitro. Results: Clinical database analyses showed that the cGAS-STING pathway is involved in the occurrence of chronic liver disease. Naringenin ameliorated liver injury and liver fibrosis, decreased collagen deposition and cGAS expression, and inhibited inflammation in carbon tetrachloride (CCl4)-treated mice. Molecular docking found that cGAS may be a direct target of naringenin. Consistent with the in vivo results, we verified the inhibitory effect of naringenin on activated hepatic stellate cells (HSCs). By using the cGAS-specific agonist double-stranded (ds)DNA, we showed that naringenin attenuated the activation of cGAS and its inflammatory factors affected by dsDNA. We verified that naringenin inhibited the cGAS-STING pathway, thereby reducing the secretion of inflammatory factors by HSCs to ameliorate liver fibrosis. Conclusions: Interrupting the cGAS-STING pathway helped reverse the fibrosis process. Naringenin has potential as an antihepatic fibrosis drug.

4.
Phytomedicine ; 107: 154460, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36182798

RESUMO

BACKGROUND: Qingchang Wenzhong Decoction (QCWZD), a chinese herbal prescription, is widely used for ulcerative colitis (UC). Nevertheless, the active ingredients and mechanism of QCWZD in UC have not yet been explained clearly. PURPOSE: This research focuses on the identification of the effective ingredients of QCWZD and the prediction and verification of their potential targets. METHODS: The UC mice were established by adding 3.0% dextran sulfate sodium (DSS) to sterile water for one week. Concurrently, mice in the treatment group were gavage QCWZD or mesalazine. LC-MS analyzed the main components absorbed after QCWZD treatment, and network pharmacology predicted their possible targets. ELISA, qPCR, immunohistochemistry and immunofluorescence experiments were used to evaluate the colonic inflammation level and the intestinal barrier completeness. The percentage of Th17 and Treg lymphocytes was detected by flow cytometry. RESULTS: After QCWZD treatment, twenty-seven compounds were identified from the serum. In addition, QCWZD treatment significantly reduced the increased myeloperoxidase (MPO) and inflammatory cell infiltration caused by DSS in the colonic. In addition, QCWZD can reduce the secretion of inflammatory factors in serum and promote the expression of mRNAs and proteins of occludin and ZO-1. Network pharmacology analysis indicated that inhibiting IL-6-STAT3 pathway may be necessary for QCWZD to treat UC. Flow cytometry analysis showed that QCWZD can restore the normal proportion of Th17 lymphocytes in UC mice. Mechanistically, QCWZD inhibited the phosphorylation of JAK2-STAT3 pathway, reducing the transcriptional activation of RORγT and IL-17A. CONCLUSIONS: Overall, for the first time, our work revealed the components of QCWZD absorbed into blood, indicated that the effective ingredients of QCWZD may inhibit IL-6-STAT3 pathway and inhibit the differentiation of Th17 lymphocytes to reduce colon inflammation.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Mesalamina/metabolismo , Mesalamina/farmacologia , Mesalamina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ocludina/metabolismo , Peroxidase/metabolismo , Células Th17 , Água
5.
Front Pharmacol ; 13: 891069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656309

RESUMO

Liver fibrosis is a repair process of chronic liver injuries induced by toxic substances, pathogens, and inflammation, which exhibits a feature such as deposition of the extracellular matrix. The initiation and progression of liver fibrosis heavily relies on excessive activation of hepatic stellate cells (HSCs). The activated HSCs express different kinds of chemokine receptors to further promote matrix remodulation. The long-term progression of liver fibrosis will contribute to dysfunction of the liver and ultimately cause hepatocellular carcinoma. The liver also has abundant innate immune cells, including DCs, NK cells, NKT cells, neutrophils, and Kupffer cells, which conduct complicated functions to activation and expansion of HSCs and liver fibrosis. Autophagy is one specific type of cell death, by which the aberrantly expressed protein and damaged organelles are transferred to lysosomes for further degradation, playing a crucial role in cellular homeostasis. Autophagy is also important to innate immune cells in various aspects. The previous studies have shown that dysfunction of autophagy in hepatic immune cells can result in the initiation and progression of inflammation in the liver, directly or indirectly causing activation of HSCs, which ultimately accelerate liver fibrosis. Given the crosstalk between innate immune cells, autophagy, and fibrosis progression is complicated, and the therapeutic options for liver fibrosis are quite limited, the exploration is essential. Herein, we review the previous studies about the influence of autophagy and innate immunity on liver fibrosis and the molecular mechanism to provide novel insight into the prevention and treatment of liver fibrosis.

6.
Tissue Cell ; 74: 101706, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883316

RESUMO

Anti-tumorous effect of Aloperine (ALO) has been previously found. This study examined the role and the underlying mechanism of ALO in colorectal cancer (CRC). CRC cells were processed by different concentrations of ALO, and subsequently the cell proliferation was detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and miR-296-5p expression was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, the target gene of miR-296-5p was predicted by TargetScan and confirmed by dual-luciferase reporter assay. The expressions of signal transducer and activator of transcription 3 (STAT3), apoptosis-related proteins and epithelial-mesenchymal transition (EMT)-related markers were measured by Western blot. Clone formation assay, flow cytometry, wound-healing and Transwell assays were respectively employed to detect cell proliferation, apoptosis, migration and invasion. ALO inhibited CRC cell proliferation in a dose-dependent manner. MiR-296-5p was low-expressed in CRC tissues and cells, and ALO promoted miR-296-5p expression. STAT3 was targeted by miR-296-5p. Up-regulation of miR-296-5p and ALO treatment both suppressed STAT3 expression, inhibited CRC cell proliferation, migration, invasion as well as the expressions of Bcl-2 and N-cadherin, but promoted apoptosis and expressions of Bax and E-cadherin, which were all reversed by overexpressed STAT3. ALO inhibited CRC cell proliferation, metastasis and EMT but promoted apoptosis via regulating miR-296-5p/STAT3 axis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Quinolizidinas/farmacologia , RNA Neoplásico/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HCT116 , Células HT29 , Humanos , MicroRNAs/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Fator de Transcrição STAT3/genética
7.
Front Oncol ; 11: 729512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804922

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers in the world with a 5-year survival rate of approximately 68%. Although researchers accumulated many scientific studies, its pathogenesis remains unclear yet. Detecting and removing these malignant polyps promptly is the most effective method in CRC prevention. Therefore, the analysis and disposal of malignant polyps is conducive to preventing CRC. METHODS: In the study, metabolic profiling as well as diagnostic biomarkers for CRC was investigated using untargeted GC-MS-based metabolomics methods to explore the intervention approaches. In order to better characterize the variations of tissue and serum metabolic profiles, orthogonal partial least-square discriminant analysis was carried out to further identify significant features. The key differences in tR-m/z pairs were screened by the S-plot and VIP value from OPLS-DA. Identified potential biomarkers were leading in the KEGG in finding interactions, which show the relationships among these signal pathways. RESULTS: Finally, 17 tissue and 13 serum candidate ions were selected based on their corresponding retention time, p-value, m/z, and VIP value. Simultaneously, the most influential pathways contributing to CRC were inositol phosphate metabolism, primary bile acid biosynthesis, phosphatidylinositol signaling system, and linoleic acid metabolism. CONCLUSIONS: The preliminary results suggest that the GC-MS-based method coupled with the pattern recognition method and understanding these cancer-specific alterations could make it possible to detect CRC early and aid in the development of additional treatments for the disease, leading to improvements in CRC patients' quality of life.

8.
Am J Transl Res ; 13(8): 9296-9305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540046

RESUMO

OBJECTIVE: Ulcerative colitis (UC) is a moderate to severe inflammatory bowel disease, with a characteristic inflammatory response. Chinese herbal medicine can play a role in UC treatment. Herein, we aimed to investigate the function of Glycyrrhiza uralensis in UC treatment and the underlying mechanism. METHODS: After establishing an animal model of UC, different agents of kuijieguanchang prescription, Glycyrrhiza uralensis, mesalazine, and GW4064 were administrated to mice. The apoptosis rate was measured by TUNEL assay, and the expression of different biomarkers was tested by western blot and qPCR. RESULTS: Glycyrrhiza uralensis could regulate apoptosis of intestinal mucosal cells, through regulating the expression of apoptosis-related proteins and protective proteins of intestinal mucosa. The administration of Glycyrrhiza uralensis could greatly enhance the expression of muc1, muc3, and the pro-apoptotic protein, BAX. The proteins involved in malignancy from UC, such as Bcl-2 and fgf-15, were dramatically downregulated after using the Glycyrrhiza uralensis. Moreover, it was illustrated that Glycyrrhiza uralensis acted against UC by activating the signaling of P-gp through upregualting its expression. The upregulation of FGFR4, SHP, and P-gp in liver conferred protective function in UC. CONCLUSION: Glycyrrhiza uralensis could regulate apoptosis of intestinal mucosal cells, through regulating the expression of apoptosis-related proteins and protective proteins of intestinal mucosa. The results provide novel options for UC treatment, as well as a rationale for pharmacology of Chinese traditional medicine, that is favorable for use of herbal medicine.

9.
Drug Des Devel Ther ; 15: 857-870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664565

RESUMO

BACKGROUND: Aloperine can regulate miR-296-5p/Signal Transducer and Activator of Transcription 3 (STAT3) pathway to inhibit the malignant development of colorectal cancer (CRC), but the regulatory mechanism is unclear. This study explored the upstream mechanism of Aloperine in reducing CRC damage from the perspective of the circRNA-miRNA-mRNA regulatory network. METHODS: After treatment with gradient concentrations of Aloperine (0.1 mmol/L, 0.2 mmol/L, 0.4 mmol/L, 0.8 mmol/L and 1 mmol/L) for 24 hours, changes in CRC cell proliferation and apoptosis were detected by functional experiments. Data of the differential expression of miR-296-5p in CRC patients and healthy people were obtained from Starbase. The effects of Aloperine on 12 differentially expressed circRNAs were detected. The binding of miR-296-5p with NOP2/Sun RNA methyltransferase 2 (circNSUN2) and STAT3 was predicted by TargetScan and confirmed through dual-luciferase experiments. The expressions of circNSUN2, miR-296-5p and STAT3 as well as apoptosis-related genes in CRC cells were detected by qRT-PCR and Western blot as needed. Rescue experiments were conducted to test the regulatory effects of circNSUN2, miR-296-5p and STAT3 on CRC cells. RESULTS: Aloperine at a concentration gradient inhibited proliferation and promoted apoptosis in CRC cells. The abnormally low expression of miR-296-5p in CRC could be upregulated by Aloperine. Among the differentially expressed circRNAs in CRC, only circNSUN2 not only targets miR-296-5p, but also can be regulated by Aloperine. The up-regulation of circNSUN2 offset the inhibitory effect of Aloperine on cancer cells. The rescue experiments finally confirmed the regulation of circNSUN2/miR-296-5p/STAT3 axis in CRC cells. CONCLUSION: By regulating the circNSUN2/miR-296-5p/STAT3 pathway, Aloperine prevents the malignant development of CRC cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Quinolizidinas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estrutura Molecular , Quinolizidinas/química , RNA Circular/genética , RNA Circular/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade
10.
Artigo em Inglês | MEDLINE | ID: mdl-33014113

RESUMO

BACKGROUND: Oxaliplatin (L-OHP) resistance is a major obstacle to the effective treatment of colorectal cancer. The resistance mechanism(s) of colorectal tumors to L-OHP may be related to the regulation of ERCC1 by cancer-expressed miRNAs, but no in-depth studies on the miRNAs that affect drug resistance have been performed. Curcumin (Cur) can reverse the drug resistance of cancer cells, but its effects on ERCC1 expression and miRNA profiles in colorectal cancer have not been studied. METHODS: To study the regulation effect of curcumin on ERCC1 expression and its effects on miRNAs, the L-OHP-resistant colorectal cancer cell line HCT116/L-OHP was established. MTT assays were used to evaluate cell proliferation. Flow cytometry was used to investigate apoptotic induction. Western blot and RT-PCR analysis were used to evaluate the expression of drug-associated ERCC1, Bcl-2, GST-π, MRP, P-gp, and survivin. RESULTS: HCT116//L-OHP cell lines were successfully established. The combination of L-OHP and curcumin could reduce L-OHP resistance in vitro. In addition, combination therapy inhibited the expression of ERCC1, Bcl-2, GST-π, MRP, P-gp, and survivin at the mRNA and protein level. Curcumin was found to inhibit ERCC1 through its ability to modulate miR-409-3p. CONCLUSION: Curcumin can overcome L-OHP resistance in colorectal cancer cells through its effects on miR-409-3p mediated ERCC1 expression.

11.
Redox Biol ; 36: 101619, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863216

RESUMO

Ferroptosis is a recently discovered form of programmed cell death, but its regulatory mechanisms are not fully understood. In the current study, we reported that the BRD7-P53-SLC25A28 axis played a crucial role in regulating ferroptosis in hepatic stellate cells (HSCs). Upon exposure to ferroptosis inducers, bromodomain-containing protein 7 (BRD7) protein expression was remarkably increased through the inhibition of the ubiquitin-proteasome pathway. CRISPR/Cas9-mediated BRD7 knockout conferred resistance to HSC ferroptosis, whereas specific BRD7 plasmid-mediated BRD7 overexpression facilitated HSC ferroptosis. Interestingly, the elevated BRD7 expression exhibited to promote p53 mitochondrial translocation via direct binding with p53 N-terminal transactivation domain (TAD), which may be the underlying mechanisms for BRD7-enhanced HSC ferroptosis. Site-directed mutations of serine 392 completely blocked the binding of BRD7 to p53, and, in turn, prevented p53 mitochondrial translocation and HSC ferroptosis. Importantly, mitochondrial p53 interacted with solute carrier family 25 member 28 (SLC25A28) to form complex and enhanced the activity of SLC25A28, which could lead to the abnormal accumulation of redox-active iron and hyperfunction of electron transfer chain (ETC). SLC25A28 knockdown impaired BRD7-or p53-mediated ferroptotic events. In mice, erastin treatment ameliorated pathological damage of liver fibrosis through inducing HSC ferroptosis. HSC-specific blockade of BRD7-P53-SLC25A28 axis could abrogate erastin-induced HSC ferroptosis. Of note, we analyzed the effect of sorafenib on HSC ferroptosis in advanced fibrotic patients with hepatocellular carcinoma receiving sorafenib monotherapy. Attractively, BRD7 upregulation, p53 mitochondrial translocation, combination of SLC25A28 and p53, and ferroptosis induction occurred in primary human HSCs. Overall, these findings reveal novel signal transduction and regulatory mechanism of ferroptosis, and also suggest BRD7-P53-SLC25A28 axis as potential targets for liver fibrosis.


Assuntos
Carcinoma Hepatocelular , Proteínas de Transporte de Cátions , Ferroptose , Neoplasias Hepáticas , Animais , Proteínas Cromossômicas não Histona , Células Estreladas do Fígado , Humanos , Camundongos , Proteína Supressora de Tumor p53/genética
12.
Int Immunopharmacol ; 85: 106637, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32512269

RESUMO

More and more evidence showed that autophagy is an inflammation-related defense mechanism against a variety of diseases including liver fibrosis. However, the essential mechanisms remain poorly understood. In this study, we sought to elucidate the impact of Oroxylin A on autophagy and further to identify the potential mechanism of its anti-inflammatory activity. We found that Oroxylin A played a critical role in controlling inflammation in murine liver fibrosis. Moreover, Oroxylin A could inhibit the secretion of pro-inflammatory cytokines in activated hepatic stellate cell (HSCs). We previously reported that Oroxylin A can induce autophagy to alleviate the pathological changes of liver fibrosis and the activation of HSC. Here we further revealed that the inhibition of the PI3K/Akt/mTOR signaling was required for Oroxylin A to induce autophagy activation, which may be the underlying mechanism of the anti-inflammatory activity of Oroxylin A. Interestingly, mTOR overexpression completely impaired the Oroxylin A-mediated autophagy activation, and in turn, damaged the anti-inflammatory activity. Importantly, Oroxylin A inhibited PI3K/Akt/mTOR signaling by scavenging reactive oxygen species (ROS). ROS accumulation by buthionine sulfoximine (BSO) could abrogate the Oroxylin A-mediated ROS elimination, the inhibition of PI3K/Akt/mTOR signaling, and anti-inflammatory activities. Overall, our results provided reliable evidence for the molecular mechanism of Oroxylin A-mediated anti-fibrosis activity, and also identified a new target for drug therapy of liver fibrosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Flavonoides/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Tetracloreto de Carbono , Células Cultivadas , Citocinas/genética , Flavonoides/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
13.
World J Gastroenterol ; 26(17): 2064-2081, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32536775

RESUMO

BACKGROUND: Epigallocatechin gallate (EGCG) is a polyhydroxy phenolic compound extracted from tea and its antitumor effect has received widespread attention. We explored the inhibitory effect of EGCG on dimethylhydrazine (DMH)-induced colorectal cancer (CRC) using a rat model, predicted the interaction between EGCG and CRC target genes using a database, and explained the EGCG associated target pathways and mechanisms in CRC. AIM: To understand the inhibitory mechanisms of EGCG on CRC cell proliferation and identify its pharmacological targets by network pharmacology analysis. METHODS: DMH (40 mg/kg, s.c., twice weekly for eight weeks) was used to induce CRC in rats. After model establishment, the rats were administered with EGCG (50, 100, or 200 mg/kg, p.o., once daily for eight weeks) and killed 12 and 20 wk after the start of the experiment. Formation of aberrant crypt foci and tumor was studied by histological analysis. Using network pharmacology analysis, candidate and collective targets of EGCG and CRC were identified, and Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses were used to predict the pathways altered by EGCG. RESULTS: At week 12, high-dose EGCG treatment significantly reduced the tumor formation rate, total number of tumors, cancerous and non-cancerous tumors, tumor volume, ascites formation, and aberrant crypt foci count. At week 20, all three doses of EGCG were effective. Seventy-eight collective targets of EGCG and CRC were identified, of which 28 genes were dysregulated in CRC. Kyoto Encyclopedia of Genes and Genomes and GO analyses showed that the dysregulated genes were enriched in hsa05210 (CRC), hsa04115 (p53 signaling pathway), and hsa04151 (PI3K-Akt signaling pathway), GO:0043124 (negative regulation of I-kappaB kinase/NF-kappaB signaling pathway), GO:0043409 (negative regulation of mitogen-activated protein kinase cascade), and GO:2001244 (positive regulation of intrinsic apoptotic signaling pathway) respectively. CONCLUSION: EGCG inhibits the formation of DMH-induced CRC by regulating key pathways involved in tumorigenesis.


Assuntos
Focos de Criptas Aberrantes/prevenção & controle , Anticarcinógenos/farmacologia , Catequina/análogos & derivados , Neoplasias Colorretais/prevenção & controle , Neoplasias Experimentais/prevenção & controle , Focos de Criptas Aberrantes/induzido quimicamente , Focos de Criptas Aberrantes/genética , Focos de Criptas Aberrantes/patologia , Animais , Anticarcinógenos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Catequina/farmacologia , Catequina/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Dimetilidrazinas/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Ratos , Reto/efeitos dos fármacos , Reto/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Expert Rev Gastroenterol Hepatol ; 14(4): 259-270, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32124651

RESUMO

Introduction: Epigenetic modification is a type of gene expression and regulation that does not involve changes in DNA sequences. An increasing number of studies have proven that epigenetic modifications play an important role in the occurrence and progression of liver diseases through the gene regulation and protein expressions of hepatocellular lipid metabolism, inflammatory reaction, cell proliferation, and activation, etc.Areas covered: In this study, we elaborated and analyzed the underlying functional mechanism of epigenetic modification in alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver fibrosis (LF), viral hepatitis, hepatocellular carcinoma (HCC), and research progress of recent years.Expert opinion: The further understanding of epigenetic mechanisms that can regulate gene expression and cell phenotype leads to new insights in epigenetic control of chronic liver disease. Currently, hepatologists are exploring the role of DNA methylation, histone/chromatin modification, and non-coding RNA in specific liver pathology. These findings have led to advances in direct epigenetic biomarker testing of patient tissue or body fluid specimens, as well as quantitative analysis. Based on these findings, drug validation of some targets involved in the epigenetic mechanism of liver disease is gradually being carried out clinically.


Assuntos
Epigênese Genética , Hepatopatias/genética , Hepatopatias/fisiopatologia , Fígado/fisiopatologia , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA/genética , Progressão da Doença , Epigênese Genética/genética , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Histonas/genética , Histonas/metabolismo , Humanos , RNA não Traduzido/genética
15.
Autophagy ; 16(8): 1482-1505, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31679460

RESUMO

Ferroptosis is a recently discovered form of programmed cell death, but its regulatory mechanisms remain poorly understood. Here, we show that the RNA-binding protein ZFP36/TTP (ZFP36 ring finger protein) plays a crucial role in regulating ferroptosis in hepatic stellate cells (HSCs). Upon exposure to ferroptosis-inducing compounds, the ubiquitin ligase FBXW7/CDC4 (F-box and WD repeat domain containing 7) decreased ZFP36 protein expression by recognizing SFSGLPS motif. FBXW7 plasmid contributed to classical ferroptotic events, whereas ZFP36 plasmid impaired FBXW7 plasmid-induced HSC ferroptosis. Interestingly, ZFP36 plasmid inhibited macroautophagy/autophagy activation by destabilizing ATG16L1 (autophagy related 16 like 1) mRNA. ATG16L1 plasmid eliminated the inhibitory action of ZFP36 plasmid on ferroptosis, and FBXW7 plasmid enhanced the effect of ATG16L1 plasmid on autophagy. Importantly, ZFP36 plasmid promoted ATG16L1 mRNA decay via binding to the AU-rich elements (AREs) within the 3'-untranslated region. The internal mutation of the ARE region abrogated the ZFP36-mediated ATG16L1 mRNA instability, and prevented ZFP36 plasmid-mediated ferroptosis resistance. In mice, treatment with erastin and sorafenib alleviated murine liver fibrosis by inducing HSC ferroptosis. HSC-specific overexpression of Zfp36 impaired erastin- or sorafenib-induced HSC ferroptosis. Noteworthy, we analyzed the effect of sorafenib on HSC ferroptosis in fibrotic patients with hepatocellular carcinoma receiving sorafenib monotherapy. Attractively, sorafenib monotherapy led to ZFP36 downregulation, ferritinophagy activation, and ferroptosis induction in human HSCs. Overall, these results revealed novel molecular mechanisms and signaling pathways of ferroptosis, and also identified ZFP36-autophagy-dependent ferroptosis as a potential target for the treatment of liver fibrosis. ABBREVIATIONS: ARE: AU-rich elements; ATG: autophagy related; BECN1: beclin 1; CHX: cycloheximide; COL1A1: collagen type I alpha 1 chain; ELAVL1/HuR: ELAV like RNA binding protein 1; FBXW7/CDC4: F-box and WD repeat domain containing 7; FN1: fibronectin 1; FTH1: ferritin heavy chain 1; GPX4/PHGPx: glutathione peroxidase 4; GSH: glutathione; HCC: hepatocellular carcinoma; HSC: hepatic stellate cell; LSEC: liver sinusoidal endothelial cell; MAP1LC3A: microtubule associated protein 1 light chain 3 alpha; MDA: malondialdehyde; NCOA4: nuclear receptor coactivator 4; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; RBP: RNA-binding protein; ROS: reactive oxygen species; SLC7A11/xCT: solute carrier family 7 member 11; SQSTM1/p62: sequestosome 1; TNF: tumor necrosis factor; TP53/p53: tumor protein p53; UTR: untranslated region; ZFP36/TTP: ZFP36 ring finger protein.


Assuntos
Autofagia , Ferroptose , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Transdução de Sinais , Tristetraprolina/metabolismo , Elementos Ricos em Adenilato e Uridilato/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Motivos de Aminoácidos , Animais , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Regulação para Baixo/efeitos dos fármacos , Feminino , Ferroptose/efeitos dos fármacos , Humanos , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Piperazinas/farmacologia , Plasmídeos/genética , Ligação Proteica/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Tristetraprolina/química
16.
Int Immunopharmacol ; 36: 23-30, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27107369

RESUMO

Garlic is one natural source of organic sulfur containing compounds and has shown promise in the treatment of chronic liver disease. Dietary garlic consumption is inversely correlated with the progression of alcoholic fatty liver (AFL), although the exact underlying mechanisms are not clear. Our previous studies also have shown that diallyl trisulfide (DATS), the primary organosulfur compound from Allium sativum L, displayed anti-lipid deposition and antioxidant properties in AFL. The aim of the present study was to clarify the underlying mechanisms. In the present study, we used the intragastric infusion model of alcohol administration and human normal liver cell line LO2 cultured with suitable ethanol to mimic the pathological condition of AFL. We showed that accumulation of intracellular reactive oxygen species (ROS) was lowered significantly by the administration of DATS, but antioxidant capacity was increased by DATS. Additionally, DATS inhibited hepatocyte apoptosis via down-regulating Bax expression and up-regulating Bcl-2 expression, and attenuated alcohol-induced caspase-dependent apoptosis. More importantly, using iodoacetamide (IAM) to block hydrogen sulfide (H2S) production from DATS, we noted that IAM abolished all the above effects of DATS in ethanol-treated LO2 cells. Lastly, we found DATS could increase the expressions of cystathionine gamma-lyase (CSE) and cystathionine beta-synthase (CBS), the major H2S-producing enzymes. These results demonstrate that DATS protect against alcohol-induced fatty liver via a H2S-mediated mechanism. Therefore, targeting H2S may play a therapeutic role for AFL.


Assuntos
Compostos Alílicos/uso terapêutico , Antioxidantes/uso terapêutico , Fígado Gorduroso Alcoólico/tratamento farmacológico , Alho/imunologia , Hepatócitos/efeitos dos fármacos , Sulfetos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Etanol , Hepatócitos/patologia , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sulfitos/metabolismo
17.
Int Immunopharmacol ; 34: 250-258, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27038258

RESUMO

Liver fibrosis represents a frequent event following chronic insult to trigger wound healing responses in the liver. Activation of hepatic stellate cells (HSCs), which is a pivotal event during liver fibrogenesis, is accompanied by enhanced expressions of a series of marker proteins and pro-fibrogenic signaling molecules. Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb Artemisia annua L., and can inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to attenuate lung injury and fibrosis. However, the effect of DHA on liver fibrosis remains unclear. The aim of this study was to investigate the effect of DHA on bile duct ligation-induced injury and fibrosis in rats. DHA improved the liver histological architecture and attenuated collagen deposition in the fibrotic rat liver. Experiments in vitro showed that DHA inhibited the proliferation of HSCs and arrested the cell cycle at the S checkpoint by altering several cell-cycle regulatory proteins. Moreover, DHA reduced the protein expressions of a-SMA, α1 (I) collagen and fibronectin, being associated with interference of the platelet-derived growth factor ß receptor (PDGF-ßR)-mediated ERK pathway. These data collectively revealed that DHA relieved liver fibrosis possibly by targeting HSCs via the PDGF-ßR/ERK pathway. DHA may be a therapeutic antifibrotic agent for the treatment of hepatic fibrosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artemisininas/uso terapêutico , Células Estreladas do Fígado/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Artemisia annua/imunologia , Ductos Biliares/cirurgia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibrose , Células Estreladas do Fígado/fisiologia , Humanos , Fígado/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Medicina Tradicional Chinesa , Ratos , Ratos Sprague-Dawley
18.
IUBMB Life ; 68(3): 220-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26865509

RESUMO

As a frequent event following chronic insult, liver fibrosis triggers wound healing reactions, with extracellular matrix components accumulated in the liver. During liver fibrogenesis, activation of hepatic stellate cells (HSCs) is the pivotal event. Fibrosis regression can feasibly be treated through pharmacological induction of HSC apoptosis. Herein we showed that dihydroartemisinin (DHA) improved liver histological architecture, decreased hepatic enzyme levels, and inhibited HSCs activation in the fibrotic rat liver. DHA also induced apoptosis of HSCs in such liver, as demonstrated by reduced distribution of α-SMA-positive cells and the presence of high number of cleaved-caspase-3-positive cells in vivo, as well as by down-regulation of Bcl-2 and up-regulation of Bax. In addition, in vitro experiments showed that DHA significantly inhibited HSC proliferation and led to dramatic morphological alterations in HSCs. we found that DHA disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that DHA induced HSC apoptosis through disrupting the phosphoinositide 3-kinase (PI3K)/Akt pathway and that PI3K specific inhibitor LY294002 mimicked the pro-apoptotic effect of DHA. DHA is a promising candidate for the prevention and treatment of liver fibrosis.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Células Estreladas do Fígado/fisiologia , Cirrose Hepática/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Ductos Biliares/patologia , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Células Estreladas do Fígado/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
19.
Lab Invest ; 95(11): 1234-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26302188

RESUMO

Epithelial-mesenchymal transition (EMT) occurs during adult tissue remodeling responses including carcinogenesis and fibrosis. Existing evidence reveals that hepatocytes can undergo EMT in adult liver, which is critically involved in chronic liver injury. We herein established a hypoxia-induced EMT model in human LO2 hepatocytes treated with cobalt chloride (CoCl2) in vitro, and evaluated the effects of curcumin, a natural antifibrotic compound, on hepatocyte EMT and explored the underlying molecular mechanisms. We found that CoCl2 at non-toxic doses induced a mesenchymal cell phenotype in hepatocytes and upregulated several mesenchymal markers including α-smooth muscle actin, vimentin, N-cadherin, fibronectin and Snail (an EMT-related transcription factor), but downregulated the epithelial marker E-cadherin in hepatocytes. However, curcumin reversed the morphological changes, abrogated the increased expression of mesenchymal markers, and rescued E-cadherin expression in CoCl2-treated hepatocytes, suggesting the inhibition of hepatocyte EMT in vitro. We further found that curcumin interfered with the transforming growth factor-ß (TGF-ß) signaling by reducing the expression of TGF-ß receptor I and inhibiting the expression and phosphorylation of Smad2 and Smad3. Use of SB431542, a specific inhibitor of TGF-ß receptor I, demonstrated that interference with the TGF-ß/Smad pathway was associated with curcumin suppression of hepatocyte EMT. Our in vivo data showed that curcumin affected hepatic EMT in rat fibrotic liver caused by carbon tetrachloride, which was associated with the inhibition of TGF-ß/Smad signaling. These findings characterized a novel mechanism by which curcumin modulated hepatocyte EMT implicated in treatment of liver fibrosis.


Assuntos
Cobalto/farmacologia , Curcumina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley
20.
Artigo em Inglês | MEDLINE | ID: mdl-26101535

RESUMO

Our previous study indicated that herbal SGR formula partially attenuates ethanol-induced fatty liver, but the underlying mechanisms remain unclear. In the present study, mice were pretreated with SGR (100 and 200 mg/kg/d bw) for 30 d before being exposed to ethanol (4.8 g/kg bw). The biochemical indices and histopathological changes were examined to evaluate the protective effects and to explore potential mechanisms by investigating the adiponectin, tumor necrosis factor-α (TNF-α), peroxisome proliferators-activated receptor-α (PPAR-α), sterol regulatory element binding protein-1c (SREBP-1c), adenosine monophosphate-activated protein kinase (AMPK), and so forth. Results showed that SGR pretreatment markedly inhibited acute ethanol-induced liver steatosis, significantly reduced serum and hepatic triglyceride (TG) level, and improved classic histopathological changes. SGR suppressed the protein expression of hepatic SREBP-1c and TNF-α and increased adiponectin, PPAR-α, and AMPK phosphorylation in the liver. Meanwhile, acute toxicity tests showed that no death or toxic side effects within 14 days were observed upon oral administration of the extracts at a dose of 16 g/kg body wt. These results demonstrate that SGR could protect against acute alcohol-induced liver steatosis without any toxic side effects. Therefore, our studies provide novel molecular insights into the hepatoprotective effect of SGR formula, which may be exploited as a therapeutic agent for ethanol-induced hepatosteatosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA