Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(23): e2310043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358310

RESUMO

T cells are critical mediators of antigen-specific immune responses and are common targets for immunotherapy. Biomaterial scaffolds have previously been used to stimulate antigen-presenting cells to elicit antigen-specific immune responses; however, structural and molecular features that directly stimulate and expand naïve, endogenous, tumor-specific T cells in vivo have not been defined. Here, an artificial lymph node (aLN) matrix is created, which consists of an extracellular matrix hydrogel conjugated with peptide-loaded-MHC complex (Signal 1), the co-stimulatory signal anti-CD28 (Signal 2), and a tethered IL-2 (Signal 3), that can bypass challenges faced by other approaches to activate T cells in situ such as vaccines. This dynamic immune-stimulating platform enables direct, in vivo antigen-specific CD8+ T cell stimulation, as well as recruitment and coordination of host immune cells, providing an immuno-stimulatory microenvironment for antigen-specific T cell activation and expansion. Co-injecting the aLN with naïve, wild-type CD8+ T cells results in robust activation and expansion of tumor-targeted T cells that kill target cells and slow tumor growth in several distal tumor models. The aLN platform induces potent in vivo antigen-specific CD8+ T cell stimulation without the need for ex vivo priming or expansion and enables in situ manipulation of antigen-specific responses for immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Linfonodos , Animais , Linfonodos/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Ativação Linfocitária , Hidrogéis/química , Imunoterapia/métodos , Matriz Extracelular/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Humanos , Interleucina-2/metabolismo , Peptídeos/química , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL
2.
Nat Biomed Eng ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082180

RESUMO

Lipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs. We found that the most potent antitumour activity, especially when combined with immune checkpoint inhibitors, resulted from a coordinated attack by T cells and NK cells, triggered by LNPs that elicited strong immune activity in both type-1 and type-2 T helper cells. Our findings highlight the importance of optimizing the LNP composition of mRNA-based cancer vaccines to tailor antigen-specific immune-activation profiles.

3.
Small ; 18(36): e2202309, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35948487

RESUMO

Functional microgels are preferred stem cell carriers due to the ease of delivery through minimally invasive injection and seamless integration with the surrounding host tissue. A biostimulatory nanofiber-hydrogel composite (NHC) has been previously developed through covalently crosslinking a hyaluronic acid hydrogel network with surface-functionalized poly (ε-caprolactone) nanofiber fragments. The NHC mimics the microarchitecture of native soft tissue matrix, showing enhanced cell infiltration, immunomodulation, and proangiogenic properties. Here, injectability of the pre-formed NHC is improved by mechanical fragmentation, making it into micro-fragmented NHC (mfNHC) in a granular gel form as a stem cell carrier to deliver mesenchymal stem cells (MSCs) for soft tissue remodeling. The mfNHC shows a similar storage modulus but a significantly reduced injection force, as compared with the corresponding bulk NHC. When injected subcutaneously in a rat model, mfNHC-MSC constructs initiate an elevated level of host macrophage infiltration, more pro-regenerative polarization, and subsequently, improved angiogenesis and adipogenesis response when compared to mfNHC alone. A similar trend of host cell infiltration and pro-angiogenic response is detected in a swine model with a larger volume injection. These results suggest a strong potential for use of the mfNHC as an injectable carrier for cell delivery and soft tissue remodeling.


Assuntos
Células-Tronco Mesenquimais , Nanofibras , Animais , Ácido Hialurônico , Hidrogéis , Injeções , Células-Tronco Mesenquimais/fisiologia , Ratos , Suínos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA