Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 346, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978427

RESUMO

The interplay among cigarette smoking status, oral microbiota, and cardiometabolic health is poorly understood. We aimed to examine the association of cigarette smoking status with oral microbiota and to assess the association of the identified microbial features with cardiometabolic risk factors in a Chinese population. This study included 587 participants within the Central China Cohort, including 111 smokers and 476 non-smokers, and their oral microbiota was profiled by 16S rRNA sequencing. Both oral microbial alpha- and beta-diversity were distinct between smokers and non-smokers (p < 0.05). With adjustment for sociodemographics, alcohol and tea drinking, tooth brushing frequency, and body mass index, the relative abundance of nine genera and 26 pathways, including the genus Megasphaera and two pathways involved in inositol degradation which have potentially adverse effects on cardiometabolic health, was significantly different between two groups (FDR q < 0.20). Multiple microbial features related to cigarette smoking were found to partly mediate the associations of cigarette smoking with serum triglycerides and C-reactive protein levels (p-mediation < 0.05). In conclusion, cigarette smoking status may have impacts on the oral microbial features, which may partially mediate the associations of cigarette smoking and cardiometabolic health.


Assuntos
Doenças Cardiovasculares , Fumar Cigarros , Microbiota , Boca , Adulto , Humanos , Bactérias/genética , Doenças Cardiovasculares/epidemiologia , Fumar Cigarros/efeitos adversos , População do Leste Asiático , RNA Ribossômico 16S/genética , Boca/microbiologia
2.
Front Plant Sci ; 12: 691835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276740

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine), a naturally occurring small molecule, can protect plants against abiotic stress after exogenous treatmenting with it. It is not known if melatonin homologs, such as 5-methoxytryptamine and 5-methoxyindole, that are easy and more cost-effective to synthesize can stimulate the plant immune system in the same manner as melatonin. In the present study, we assessed the biological activity of the melatonin homologs, 5-methoxytryptamin and 5-methoxyindole. The results showed that melatonin and its homologs all induced disease resistance against Phytophthora nicotianae in Nicotiana benthamiana plants. The application of all three compounds also induced stomatal closure and the production of reactive oxygen species. Gene expression analysis indicated that the expression of genes involved in hydrogen peroxide (H2O2), nitric oxide (NO) production, and salicylic acid (SA) biosynthesis was significantly upregulated by all three compounds. Four homologs of the melatonin receptors were identified by blasting search with the phytomelatonin receptor in Arabidopsis. Molecular docking studies were also used to identify four putative melatonin receptors in N. benthamiana. Further experimentation revealed that silencing of the melatonin receptors trP47363 and trP13076 in N. benthamiana compromised the induction of stomatal closure, PR-1a gene expression and SA accumulation by all three compounds. Collectively, our data indicate that the induction of defense responses in N. benthamiana by melatonin, 5-methoxytryptamine, and 5-methoxyindole involves the melatonin receptors trP47363 and trP13076.

3.
Rev Sci Instrum ; 92(5): 055004, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243262

RESUMO

The high-frequency eddy current loss limits the output speed of the giant magnetostrictive actuator (GMA). This paper investigates a GMA using a laminated silicon steel core. Compared with the integral silicon steel core, the laminated silicon steel core can reduce the equivalent conductivity and eddy currents. The laminated structure reduces the magnetic reluctance of the core and increases the magnetic field intensity in the giant magnetostrictive material rod. Therefore, the actuator can output large vibration amplitude under high-frequency magnetic field. At the sinusoidal excitation current of 35 A (rms) @ 2 kHz, the output vibration amplitude of the actuator using the laminated silicon steel core is 11.1 µm @ 4 kHz, which is 44.2% higher than that of the actuator with the integral silicon steel core. This indicates that the laminated structure of the magnetic core is beneficial to improve the output speed of GMA.

4.
J Huazhong Univ Sci Technolog Med Sci ; 33(1): 43-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23392706

RESUMO

Benzene is an established leukotoxin and leukemogen in humans. We have previously reported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phosphorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apoptosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.


Assuntos
Apoptose/fisiologia , Benzeno/toxicidade , Cromonas/farmacologia , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Proteína Quinase Ativada por DNA/metabolismo , Morfolinas/farmacologia , Apoptose/efeitos dos fármacos , Catálise , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Humanos , Células K562 , Subunidades Proteicas
5.
Chem Biol Interact ; 184(1-2): 207-11, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20036648

RESUMO

Benzene causes hematotoxicity and leukemia in humans. To analyze benzene-caused aberrant gene expression, we examined differential gene expression by microarray analysis of peripheral mononuclear blood cells from seven workers diagnosed with benzene poisoning and seven matched controls. Twenty-two genes were found up-regulated and 18 down-regulated in benzene patients compared with controls. Here we report the characterization of two benzene-regulated genes. CYP4F3A, which encodes the leukotriene B(4) (LTB(4)) omega-hydroxylase, is important for inactivation of LTB(4) in neutrophils. CYP4F3A mRNA was found elevated in all patients; moreover, CYP4F3A mRNA and protein were induced by benzene metabolite phenol in HL-60 and K562 cells as well as ex vivo in human peripheral neutrophils. Silencing of CYP4F3A in HL-60 cells by lentiviral delivery of CYP4F3A-specific siRNA reduced cell survival to 56%, 44%, 22%, 14%, and 3% at 3, 4, 5, 6, and 7 days, respectively; the results suggest that CYP4F3A is a critical positive regulator of HL-60 proliferation. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) regulates non-homologous end joining (NHEJ) in DNA double strand break (DSB) repair. DNA-PKcs mRNA was found consistently increased in the patients and DNA-PKcs mRNA and protein were induced by hydroquinone in HL-60 cells. In a DSB model, hydroquinone induced the formation of gamma-H2AX foci, a marker of DSBs, in HL-60 cells. The findings indicate that hydroquinone induces DSBs and induction correlates with elevated levels of DNA-PKcs and NHEJ. Similar results were obtained in K562 cells treated with phenol. Since NHEJ is error-prone, induction of DNA-PKcs and NHEJ may contribute to mutagenesis and leukemia by benzene. To our knowledge, the study demonstrated for the first time that benzene and metabolites induce CYP4F3A and DNA-PKcs both in vivo and in vitro. Induction of the genes may play a role in the pathogenesis of benzene hematotoxicity and serve as biomarkers of benzene exposure.


Assuntos
Proteína Quinase Ativada por DNA/genética , Expressão Gênica/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Benzeno , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450 , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Proteína Quinase Ativada por DNA/metabolismo , Feminino , Inativação Gênica/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA