Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(9): e1010056, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054210

RESUMO

Using budding yeast, we have studied Rad51-dependent break-induced replication (BIR), where the invading 3' end of a site-specific double-strand break (DSB) and a donor template share 108 bp of homology that can be easily altered. BIR still occurs about 10% as often when every 6th base is mismatched as with a perfectly matched donor. Here we explore the tolerance of mismatches in more detail, by examining donor templates that each carry 10 mismatches, each with different spatial arrangements. Although 2 of the 6 arrangements we tested were nearly as efficient as the evenly-spaced reference, 4 were significantly less efficient. A donor with all 10 mismatches clustered at the 3' invading end of the DSB was not impaired compared to arrangements where mismatches were clustered at the 5' end. Our data suggest that the efficiency of strand invasion is principally dictated by thermodynamic considerations, i.e., by the total number of base pairs that can be formed; but mismatch position-specific effects are also important. We also addressed an apparent difference between in vitro and in vivo strand exchange assays, where in vitro studies had suggested that at a single contiguous stretch of 8 consecutive bases was needed to be paired for stable strand pairing, while in vivo assays using 108-bp substrates found significant recombination even when every 6th base was mismatched. Now, using substrates of either 90 or 108 nt-the latter being the size of the in vivo templates-we find that in vitro D-loop results are very similar to the in vivo results. However, there are still notable differences between in vivo and in vitro assays that are especially evident with unevenly-distributed mismatches. Mismatches in the donor template are incorporated into the BIR product in a strongly polar fashion up to ~40 nucleotides from the 3' end. Mismatch incorporation depends on the 3'→ 5' proofreading exonuclease activity of DNA polymerase δ, with little contribution from Msh2/Mlh1 mismatch repair proteins, or from Rad1-Rad10 flap nuclease or the Mph1 helicase. Surprisingly, the probability of a mismatch 27 nt from the 3' end being replaced by donor sequence was the same whether the preceding 26 nucleotides were mismatched every 6th base or fully homologous. These data suggest that DNA polymerase δ "chews back" the 3' end of the invading strand without any mismatch-dependent cues from the strand invasion structure. However, there appears to be an alternative way to incorporate a mismatch at the first base at the 3' end of the donor.


Assuntos
Proteínas de Saccharomyces cerevisiae , DNA Polimerase III/genética , Reparo do DNA/genética , Replicação do DNA/genética , Exonucleases/genética , Proteína 2 Homóloga a MutS/genética , Nucleotídeos/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Front Cell Dev Biol ; 9: 745311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869333

RESUMO

DNA double strand breaks (DSBs) are among some of the most deleterious forms of DNA damage. Left unrepaired, they are detrimental to genome stability, leading to high risk of cancer. Two major mechanisms are responsible for the repair of DSBs, homologous recombination (HR) and nonhomologous end joining (NHEJ). The complex nature of both pathways, involving a myriad of protein factors functioning in a highly coordinated manner at distinct stages of repair, lend themselves to detailed mechanistic studies using the latest single-molecule techniques. In avoiding ensemble averaging effects inherent to traditional biochemical or genetic methods, single-molecule studies have painted an increasingly detailed picture for every step of the DSB repair processes.

3.
J Vis Exp ; (160)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32658186

RESUMO

Homologous recombination (HR) is important for the repair of double-stranded DNA breaks (DSBs) and stalled replication forks in all organisms. Defects in HR are closely associated with a loss of genome integrity and oncogenic transformation in human cells. HR involves coordinated actions of a complex set of proteins, many of which remain poorly understood. The key aspect of the research described here is a technology called "DNA curtains", a technique which allows for the assembly of aligned DNA molecules on the surface of a microfluidic sample chamber. They can then be visualized by total internal reflection fluorescence microscopy (TIRFM). DNA curtains was pioneered by our laboratory and allows for direct access to spatiotemporal information at millisecond time scales and nanometer scale resolution, which cannot be easily revealed through other methodologies. A major advantage of DNA curtains is that it simplifies the collection of statistically relevant data from single molecule experiments. This research continues to yield new insights into how cells regulate and preserve genome integrity.


Assuntos
DNA/genética , Recombinação Homóloga , Dispositivos Lab-On-A-Chip , DNA/química , Humanos
4.
Mol Cell ; 79(1): 99-114.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32445620

RESUMO

Structural maintenance of chromosomes (SMC) complexes are essential for genome organization from bacteria to humans, but their mechanisms of action remain poorly understood. Here, we characterize human SMC complexes condensin I and II and unveil the architecture of the human condensin II complex, revealing two putative DNA-entrapment sites. Using single-molecule imaging, we demonstrate that both condensin I and II exhibit ATP-dependent motor activity and promote extensive and reversible compaction of double-stranded DNA. Nucleosomes are incorporated into DNA loops during compaction without being displaced from the DNA, indicating that condensin complexes can readily act upon nucleosome-bound DNA molecules. These observations shed light on critical processes involved in genome organization in human cells.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Humanos , Modelos Moleculares , Complexos Multiproteicos/genética , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula/métodos
5.
Nat Struct Mol Biol ; 26(8): 695-703, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332353

RESUMO

UV-DDB, a key protein in human global nucleotide excision repair (NER), binds avidly to abasic sites and 8-oxo-guanine (8-oxoG), suggesting a noncanonical role in base excision repair (BER). We investigated whether UV-DDB can stimulate BER for these two common forms of DNA damage, 8-oxoG and abasic sites, which are repaired by 8-oxoguanine glycosylase (OGG1) and apurinic/apyrimidinic endonuclease (APE1), respectively. UV-DDB increased both OGG1 and APE1 strand cleavage and stimulated subsequent DNA polymerase ß-gap filling activity by 30-fold. Single-molecule real-time imaging revealed that UV-DDB forms transient complexes with OGG1 or APE1, facilitating their dissociation from DNA. Furthermore, UV-DDB moves to sites of 8-oxoG repair in cells, and UV-DDB depletion sensitizes cells to oxidative DNA damage. We propose that UV-DDB is a general sensor of DNA damage in both NER and BER pathways, facilitating damage recognition in the context of chromatin.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Linhagem Celular , Dano ao DNA , DNA Glicosilases/química , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Dímeros de Pirimidina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula , Especificidade por Substrato , Xeroderma Pigmentoso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA