Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0277218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331907

RESUMO

Mesenchymal stem cells (MSCs) are known to be able to modulate immune responses, possess tissue-protective properties, and exhibit healing capacities with therapeutic potential for various diseases. The ability of MSCs to secrete various cytokines and growth factors provides new insights into autoimmune-diseases such as rheumatoid arthritis (RA). RA is a systemic autoimmune disease that affects the lining of synovial joints, causing stiffness, pain, inflammation, and joint erosion. In recent years, MSCs-based therapies have been widely proposed as promising therapies in the treatment of RA. However, the mechanism involved in disease-specific therapeutic effects of MSCs on RA remains unclear. To clarify the mechanism involved in effects of MSCs on RA, proteomic profiling was performed using an RA mouse model before and after treatment with MSCs. In this study, treatment efficacy of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) was confirmed using a type II collagen-induced arthritis (CIA) mouse model. Results of measuring incidence rates of arthritis and clinical arthritis index (CAI) revealed that mice administrated with hUCB-MSCs had a significant reduction in arthritis severity. Proteins that might affect disease progression and therapeutic efficacy of hUCB-MSC were identified through LC-MS/MS analysis using serum samples. In addition, L-1000 analysis was performed for hUCB-MSC culture medium. To analysis data obtained from LC-MS/MS and L-1000, tools such as ExDEGA, MEV, and DAVID GO were used. Results showed that various factors secreted from hUCB-MSCs might play roles in therapeutic effects of MSCs on RA, with platelet activation possibly playing a pivotal role. Results of this study also suggest that SERPINE1 and THBS1 among substances secreted by hUCB-MSC might be key factors that can inhibit platelet activation. This paper is expected to improve our understanding of mechanisms involved in treatment effects of stem cells on rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Humanos , Animais , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Modelos Animais de Doenças
2.
Int J Stem Cells ; 15(3): 311-323, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35220283

RESUMO

Background and Objectives: Human mesenchymal stem cells (MSCs) are emerging as a treatment for atopic dermatitis (AD), a chronic inflammatory skin disorder that affects a large number of people across the world. Treatment of AD using human umbilical cord blood-derived MSCs (hUCB-MSCs) has recently been studied. However, the mechanism underlying their effect needs to be studied continuously. Thus, the objective of this study was to investigate the immunomodulatory effect of epidermal growth factor (EGF) secreted by hUCB-MSCs on AD. Methods and Results: To explore the mechanism involved in the therapeutic effect of MSCs for AD, a secretome array was performed using culture medium of hUCB-MSCs. Among the list of genes common for epithelium development and skin diseases, we focused on the function of EGF. To elucidate the effect of EGF secreted by hUCB-MSCs, EGF was downregulated in hUCB-MSCs using EGF-targeting small interfering RNA. These cells were then co-cultured with keratinocytes, Th2 cells, and mast cells. Depletion of EGF disrupted immunomodulatory effects of hUCB-MSCs on these AD-related inflammatory cells. In a Dermatophagoides farinae-induced AD mouse model, subcutaneous injection of hUCB-MSCs ameliorated gross scoring, histopathologic damage, and mast cell infiltration. It also significantly reduced levels of inflammatory cytokines including interleukin (IL)-4, tumor necrosis factor (TNF)-α, thymus and activation-regulated chemokine (TARC), and IL-22, as well as IgE levels. These therapeutic effects were significantly attenuated at all evaluation points in mice injected with EGF-depleted hUCB-MSCs. Conclusions: EGF secreted by hUCB-MSCs can improve AD by regulating inflammatory responses of keratinocytes, Th2 cells, and mast cells.

3.
Exp Mol Med ; 50(1): e425, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29328072

RESUMO

Human placenta amniotic membrane-derived mesenchymal stem cells (AMSCs) regulate immune responses, and this property can be exploited to treat stroke patients via cell therapy. We investigated the expression profile of AMSCs cultured under hypoxic conditions and observed interesting expression changes in various genes involved in immune regulation. CD200, an anti-inflammatory factor and positive regulator of TGF-ß, was more highly expressed under hypoxic conditions than normoxic conditions. Furthermore, AMSCs exhibited inhibition of pro-inflammatory cytokine expression in co-cultures with LPS-primed BV2 microglia, and this effect was decreased in CD200-silenced AMSCs. The AMSCs transplanted into the ischemic rat model of stroke dramatically inhibited the expression of pro-inflammatory cytokines and up-regulated CD200, as compared with the levels in the sham-treated group. Moreover, decreased microglia activation in the boundary region and improvements in behavior were confirmed in AMSC-treated ischemic rats. The results suggested that the highly expressed CD200 from the AMSCs in a hypoxic environment modulates levels of inflammatory cytokines and microglial activation, thus increasing the therapeutic recovery potential after hypoxic-ischemic brain injury, and further demonstrated the immunomodulatory function of AMSCs in a stroke model.


Assuntos
Antígenos CD/metabolismo , Placenta/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Acidente Vascular Cerebral/terapia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Encéfalo/patologia , Hipóxia Celular , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Imunomodulação/fisiologia , Masculino , Camundongos , Microglia/citologia , Microglia/metabolismo , Gravidez , Ratos Sprague-Dawley , Acidente Vascular Cerebral/fisiopatologia
4.
Mol Neurobiol ; 55(6): 4870-4884, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28736792

RESUMO

Traumatic brain injury (TBI), a complicated form of brain damage, is a major cause of mortality in adults. Following mechanical and structural primary insults, a battery of secondary insults, including neurotransmitter-mediated cytotoxicity, dysregulation of calcium and macromolecule homeostasis, and increased oxidative stress, exacerbate brain injury and functional deficits. Although stem cell therapy is considered to be an alternative treatment for brain injuries, such as TBI and stroke, many obstacles remain. In particular, the time window for TBI treatment with either drugs or stem cells and their efficacy is still vague. Human placenta-derived mesenchymal stem cells (hpMSCs) have received extensive attention in stem cell therapy because they can be acquired in large numbers without ethical issues and because of their immune-modulating capacity and effectiveness in several diseases, such as Alzheimer's disease and stroke. Here, we tested the feasibility of hpMSCs for TBI treatment with an animal model and attempted to identify appropriate time points for cell treatments. Double injections at 4 and 24 h post-injury significantly reduced the infarct size and suppressed astrocyte and microglial activation around the injury. With reduced damage, double-injected mice showed enhanced anti-inflammatory- and TNF-α receptor 2 (TNFR2)-associated survival signals and suppressed pro-inflammatory and oxidative responses. In addition, double-treated TBI mice displayed restored sensory motor functions and reduced neurotoxic Aß42 plaque formation around the damaged areas. In this study, we showed the extended therapeutic potentials of hpMSCs and concluded that treatment within an appropriate time window is critical for TBI recovery.


Assuntos
Lesões Encefálicas Traumáticas/reabilitação , Sobrevivência Celular/fisiologia , Inflamação/reabilitação , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Resultado do Tratamento
5.
Cell Transplant ; 25(6): 1145-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26065854

RESUMO

Abnormal angiogenesis is a primary cause of many eye diseases, including diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity. Mesenchymal stem cells (MSCs) are currently being investigated as a treatment for several such retinal diseases based on their neuroprotective and angiogenic potentials. In this study, we evaluated the role of systemically injected human placental amniotic membrane-derived MSCs (AMSCs) on pathological neovascularization of proliferative retinopathy. We determined that AMSCs secrete higher levels of transforming growth factor-ß (TGF-ß1) than other MSCs, and the secreted TGF-ß1 directly suppresses the proliferation of endothelial cells under pathological conditions in vitro. Moreover, in a mouse model of oxygen-induced retinopathy, intraperitoneally injected AMSCs migrated into the retina and suppressed excessive neovascularization of the vasculature via expression of TGF-ß1, and the antineovascular effect of AMSCs was blocked by treatment with TGF-ß1 siRNA. These findings are the first to demonstrate that TGF-ß1 secreted from AMSCs is one of the key factors to suppress retinal neovascularization in proliferative retinopathy and further elucidate the therapeutic function of AMSCs for the treatment of retinal neovascular diseases.


Assuntos
Comunicação Parácrina , Placenta/citologia , Neovascularização Retiniana/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Âmnio/citologia , Animais , Movimento Celular , Proliferação de Células , Retinopatia Diabética/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Injeções Intraperitoneais , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Gravidez , Neovascularização Retiniana/patologia
6.
Cell Transplant ; 21(11): 2497-515, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22524897

RESUMO

Neonatal asphyxia is an important contributor to cerebral palsy (CP), for which there is no effective treatment to date. The administration of human cord blood cells (hUCBCs) is emerging as a therapeutic strategy for the treatment of neurological disorders. However, there are few studies on the application of hUCBCs to the treatment of neonatal ischemia as a model of CP. Experiments and behavioral tests (mainly motor tests) performed on neonatal hypoxia/ischemia have been limited to short-term effects of hUCBCs, but mechanisms of action have not been investigated. We performed a study on the use of hUCBCs in a rat model of neonatal hypoxia/ischemia and investigated the underlying mechanism for therapeutic benefits of hUCBC treatment. hUCBCs were intravenously transplanted into a rat model of neonatal hypoxia ischemia. hUCBCs increased microglia temporarily in the periventricular striatum in the early phase of disease, protected mature neurons in the neocortex from injury, paved the way for the near-normalization of brain damage in the subventricular zone (SVZ), and, in consequence, significantly improved performance in a battery of behavioral tests compared to the vehicle-treated group. Although the transplanted cells were rarely observed in the brain 3 weeks after transplantation, the effects of the improved behavioral functions persisted. Our preclinical findings suggest that the long-lasting positive influence of hUCBCs is derived from paracrine effects of hUCBCs that stimulate recovery in the injured brain and protect against further brain damage.


Assuntos
Paralisia Cerebral/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Sangue Fetal/citologia , Neocórtex/citologia , Animais , Linhagem Celular , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Neocórtex/metabolismo , Ratos
7.
J Neurosurg ; 111(1): 155-63, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19361262

RESUMO

OBJECT: Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent hematopoietic growth factor that both enhances the survival and drives the differentiation and proliferation of myeloid lineage cells. Recent studies have suggested that GM-CSF has a neuroprotective effect against CNS injury. In this paper, the authors investigated the neuroprotective effect of GM-CSF on neuron survival and locomotor behavior in a rat model of focal cerebral ischemic injury. MATERIALS: To understand its neuroprotective effect in vitro, GM-CSF was administered to a glutamate-induced excitotoxicity neuronal injury cell culture model that mimics the pathophysiology of focal hypoxic cerebral injury. In the animal study, the authors prepared a rat focal cerebral ischemia model by occluding the unilateral middle cerebral artery. They then examined the effects of GM-CSF administration on changes in infarct volume, apoptosis-related gene expression, and improvement in locomotor behavior. RESULTS: Treatment with GM-CSF significantly increased cell viability in a cell culture model of glutamate-induced neuronal injury. Furthermore, in vivo administration of GM-CSF at 60 microg/kg body weight daily for 5 consecutive days beginning immediately after injury decreased infarction volume, altered the expression of several apoptosis-related genes (Bcl-2, Bax, caspase 3, and p53), and improved locomotor behavior in the focal cerebral ischemia model. CONCLUSIONS: The GM-CSF had neuroprotective effects in in vitro and in vivo experiments and resulted in decreased infarction volume and improved locomotor behavior. Although the specific mechanism involved in stroke recovery was not fully elucidated as it was not the primary focus of this study, administration of GM-CSF appeared to decrease the extent of neuronal apoptosis by modulating the expression of several apoptosis-related genes such as Bcl-2, Bax, caspase 3, and p53. Further investigations are necessary to better understand the role of GM-CSF on neural regeneration during the recovery phase of a stroke, as well as the intracellular signal transduction pathways that mediate neuroprotection.


Assuntos
Apoptose/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular Tumoral , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Humanos , Ataque Isquêmico Transitório/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neuroblastoma , Neurotoxinas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos
8.
Eur J Neurosci ; 29(5): 891-900, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19245369

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine that has the potential for clinical application. The biological effects of GM-CSF have been well characterized, and include stimulation of bone marrow hematopoietic stem cell proliferation and inhibition of apoptosis of hematopoietic cells. In contrast, the therapeutic effects of GM-CSF on the central nervous system in acute injury such as stroke and spinal cord injury have been reported only recently. To better understand the protective effect of GM-CSF on dopaminergic neurons in Parkinson's disease (PD), we investigated the effect of GM-CSF on the survival of dopamine neurons and changes in locomotor behavior in a murine PD model. We investigated the neuroprotective effects of GM-CSF in 1-methyl-4-phenylpyridinium (MPP+)-treated PC12 cells as well as in embryonic mouse primary mesencephalic neurons (PMNs) in vitro. To investigate the role of GM-CSF in vivo, we prepared a mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) PD model, and examined the effects of GM-CSF on dopaminergic neuron survival in the substantia nigra and on locomotor behavior. Treatment with GM-CSF significantly reduced MPP+-induced dopaminergic cell death in PC12 cells and PMNs in vitro. GM-CSF modulated the expression of apoptosis-related proteins, Bcl-2 and Bax, in vitro. Furthermore, administration of GM-CSF (50 microg/kg body weight/day) in vivo for 7 days protected dopaminergic neurons in the substantia nigra and improved locomotor behavior in a mouse MPTP model of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Dopamina/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Neurônios/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/prevenção & controle , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Embrião de Mamíferos , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Locomoção/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Doença de Parkinson Secundária/fisiopatologia , Técnicas de Patch-Clamp/métodos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Substância Negra/patologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA