Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(2): 143, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37127698

RESUMO

Arabidopsis ethylene (ET) signal pathway plays important roles in various aspects. Cytosine DNA methylation is significant in controlling gene expression in plants. Here, we analyzed the bisulfite sequencing and mRNA sequencing data from Arabidopsis (de)methylase mutants met1, cmt3, drm1/2, ddm1, ros1-4, and rdd to investigate how DNA (de)methylases influence the DNA methylation and expression of Arabidopsis ET pathway genes. At least 32 genes are found to involved in Arabidopsis ET pathway by text mining. Among them, 14 genes are unmethylated or methylated with very low levels. ACS6 and ACS9 are conspicuously methylated within their upstream regions. The other 16 genes are predominantly methylated at the CG sites within gene body regions in wild-type plants, and mutation of MET1 resulted in almost entire elimination of the CG methylations. In addition, CG methylations within some genes are jointly maintained by MET1 and other (de)methylases. Analyses of mRNA-seq data indicated that some ET pathway genes were differentially expressed between wild-type and diverse mutants. PDF1.2, the marker gene of ET signal pathway, was found being regulated indirectly by the methylases. Eighty-two transposable elements (TEs) were identified to be associated to 15 ET pathway genes. ACS11 is found located in a heterochromatin region that contains 57 TEs, indicating its specific expression and regulation. Together, our results suggest that DNA (de)methylases are implicated in the regulation of CG methylation within gene body regions and transcriptional activity of some ET pathway genes and that maintenance of normal CG methylation is essential for ET pathway in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Metilação de DNA , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Metiltransferases/genética , Transdução de Sinais , Etilenos/metabolismo , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498836

RESUMO

Plant laccases, as multicopper oxidases, play an important role in monolignol polymerization, and participate in the resistance response of plants to multiple biotic/abiotic stresses. However, little is currently known about the role of laccases in the cold stress response of plants. In this study, the laccase activity and lignin content of C. sinensis leaves increased after the low-temperature treatment, and cold treatment induced the differential regulation of 21 CsLACs, with 15 genes being upregulated and 6 genes being downregulated. Exceptionally, the relative expression level of CsLAC18 increased 130.17-fold after a 48-h treatment. The full-length coding sequence of CsLAC18 consists of 1743 nucleotides and encodes a protein of 580 amino acids, and is predominantly expressed in leaves and fruits. CsLAC18 was phylogenetically related to AtLAC17, and was localized in the cell membrane. Overexpression of CsLAC18 conferred enhanced cold tolerance on transgenic tobacco; however, virus-induced gene silencing (VIGS)-mediated suppression of CsLAC18 in Poncirus trifoliata significantly impaired resistance to cold stress. As a whole, our findings revealed that CsLAC18 positively regulates a plant's response to cold stress, providing a potential target for molecular breeding or gene editing.


Assuntos
Citrus , Poncirus , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Lacase/genética , Lacase/metabolismo , Poncirus/genética , Temperatura Baixa , Estresse Fisiológico/genética , Resposta ao Choque Frio/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
3.
Mol Cancer Res ; 20(12): 1724-1738, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36066963

RESUMO

Cancer progression is highly dependent on the ability of cancer cell tumor formation, in which epigenetic modulation plays an essential role. However, the epigenetic factors promoting breast tumor formation are less known. Screened from three-dimensional (3D)-sphere tumor formation model, HMGN5 that regulates chromatin structures became the candidate therapeutic target in breast cancer, though its role is obscure. HMGN5 is highly expressed in 3D-spheres of breast cancer cells and clinical tumors, also an unfavorable prognostic marker in patients. Furthermore, HMGN5 controls tumor formation and metastasis of breast cancer cells in vitro and in vivo. Mechanistically, HMGN5 is governed by active STAT3 transcriptionally and further escorts STAT3 to shape the oncogenic chromatin landscape and transcriptional program. More importantly, interference of HMGN5 by nanovehicle-packaged siRNA effectively inhibits tumor growth in breast cancer cell-derived xenograft mice model. IMPLICATIONS: Our findings reveal a novel feed-forward circuit between HMGN5 and STAT3 in promoting breast cancer tumorigenesis and suggest HMGN5 as a novel epigenetic therapeutic target in STAT3-hyperactive breast cancer.


Assuntos
Neoplasias da Mama , Proteínas HMGN , Humanos , Camundongos , Animais , Feminino , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Cromatina/genética , Linhagem Celular Tumoral , Proliferação de Células , Apoptose/genética , Transativadores/metabolismo , Neoplasias da Mama/genética , Fator de Transcrição STAT3/genética , Carcinogênese/genética
4.
Carcinogenesis ; 43(9): 874-884, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-35792800

RESUMO

High-mobility group nucleosome-binding domain 4 (HMGN4) exerts biological functions by regulating gene transcription through binding with nucleosome. As a new epigenetic regulator discovered in 2001, its biological functions have not been clarified. HMGN4 belongs to HMGNs family, in which HMGN1, 2 and 5 have been reported to play roles in oncogenesis of various cancers. However, it is reported that HMGN4 was associated with thyroid and liver cancer. In this study, we discovered for the first time that HMGN4 was highly expressed in human triple-negative breast cancer (TNBC), based on the analysis of the TCGA database. Moreover, we found that HMGN4 controlled the proliferation of human TNBC cells both in vitro and in vivo. Mechanistically, the positive correlation occurred between HMGN4 and STAT3 downstream genes while HMGN4 played an indispensable role in constitutively active STAT3 (STAT3C) induced colony formation. Interestingly, we reported that STAT3 regulated HMGN4 transcription as its transcriptional factor by chromatin immunoprecipitation and HMGN4 promoter-luc assays. That is to say, there is a feed-forward signaling circuit between HMGN4 and STAT3, which might control TNBC cell growth. Finally, we proved that the interference of HMGN4 by nanovehicle-packaged siRNA may be a potentially effective approach in TNBC treatment. In summary, our findings not only identified a novel regulator in TNBC cell proliferation but also revealed the mechanism by which HMGN4 acted as a downstream gene of STAT3 to participate in the STAT3 pathway, which indicated that HMGN4 was likely to be a potential novel target for anti-TNBC therapy.


Assuntos
Proteínas HMGN , Fator de Transcrição STAT3 , Neoplasias de Mama Triplo Negativas , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Nucleossomos , RNA Interferente Pequeno , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas HMGN/genética
5.
Metabolism ; 119: 154768, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775647

RESUMO

BACKGROUND: Reducing serum low-density lipoprotein cholesterol (LDL-C) in hyperlipemia is recognized as an effective strategy to minimize the risk of atherosclerotic cardiovascular disease (ASCVD). MiR-337-3p has already been discovered to play regulatory roles in tumor proliferation and metastasis, adipocyte browning and ischemic brain injury, etc. However, the association between miR-337-3p and LDL-C is unknown. METHODS: Gene Expression Omnibus (GEO) dataset and two hyperlipidemic murine models were used to analyze the potential relationship between miR-337-3p and LDL-C. AAV-mediated liver-directed miRNA overexpression in high fat diet (HFD)-fed mouse model was used to examine the effect of miR-337-3p on LDL-C and WB/RT-PCR/ELISA/luciferase assays were used to investigate the underlying mechanism. RESULTS: The expressions of miR-337-3p were obviously lower in multiple hyperlipidemic mouse models and had a negative correlation with serum LDL-C levels. After confirming the effect of miR-337-3p on the improvement of serum LDL-C in vivo, we discovered PCSK9 might be a possible target of miR-337-3p, which was further proved by in vitro experiments. MiR-337-3p could directly interact with both the PCSK9 3'UTR and promoter to inhibit PCSK9 translation and transcription. Furthermore, the result from DiI-LDL uptake assay under the knockdown of PCSK9 demonstrated that miR-337-3p promoting the absorption of LDL-C in HepG2 cells was dependent on PCSK9, and the result from LDLR-/- mouse model indicated that miR-337-3p regulating LDL-C was dependent on PCSK9/LDLR pathway. CONCLUSION: We discovered a new function of miR-337-3p in regulating PCSK9 expression and LDL-C absorption, suggesting miR-337-3p might be a new therapeutic target for the development of antihyperlipidemic drug.


Assuntos
LDL-Colesterol/sangue , Hiperlipidemias/genética , MicroRNAs/fisiologia , Pró-Proteína Convertase 9/genética , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/complicações , Hiperlipidemias/patologia , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética
6.
Transgenic Res ; 12(6): 715-22, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14713200

RESUMO

Tobacco leaf discs were transformed with a plasmid, pBIPTA, containing the selectable marker neomycin phosphotransferase gene (nptII) and Pinellia ternata agglutinin gene (pta) via Agrobacterium tumefaciens-mediated transformation. Thirty-two independent transgenic tobacco plants were regenerated. PCR and Southern blot analyses confirmed that the pta gene had integrated into the plant genome and northern blot analysis revealed transgene expression at various levels in transgenic plants. Genetic analysis confirmed Mendelian segregation of the transgene in T1 progeny. Insect bioassays showed that transgenic plants expressing PTA inhibited significantly the growth of peach potato aphid (Myzus persicae Sulzer). This is the first report that transgenic plants expressing pta confer enhanced resistance to aphids. Our study indicates that the pta gene can be used as a supplement to the snowdrop (Galanthus nivalis) lectin gene (gna) in the control of aphids, a sap-sucking insect pest causing significant yield losses of crops.


Assuntos
Aglutininas/genética , Afídeos/metabolismo , Nicotiana/genética , Pinellia/genética , Aglutininas/metabolismo , Agrobacterium tumefaciens/genética , Animais , Plantas Geneticamente Modificadas , Plasmídeos , Nicotiana/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA