Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862251

RESUMO

BACKGROUND: A combination of axitinib and immune checkpoint inhibitors (ICIs) demonstrated promising efficacy in the treatment of advanced renal cell carcinoma (RCC). This study aims to prospectively evaluate the safety, efficacy, and biomarkers of neoadjuvant toripalimab plus axitinib in non-metastatic clear cell RCC. METHODS: This is a single-institution, single-arm phase II clinical trial. Patients with non-metastatic biopsy-proven clear cell RCC (T2-T3N0-1M0) are enrolled. Patients will receive axitinib 5 mg twice daily combined with toripalimab 240 mg every 3 weeks (three cycles) for up to 12 weeks. Patients then will receive partial (PN) or radical nephrectomy (RN) after neoadjuvant therapy. The primary endpoint is objective response rate (ORR). Secondary endpoints include disease-free survival, safety, and perioperative complication rate. Predictive biomarkers are involved in exploratory analysis. RESULTS: A total of 20 patients were enrolled in the study, with 19 of them undergoing surgery. One patient declined surgery. The primary endpoint ORR was 45%. The posterior distribution of πORR had a mean of 0.44 (95% credible intervals: 0.24-0.64), meeting the predefined primary endpoint with an ORR of 32%. Tumor shrinkage was observed in 95% of patients prior to nephrectomy. Furthermore, four patients achieved a pathological complete response. Grade ≥3 adverse events occurred in 25% of patients, including hypertension, hyperglycemia, glutamic pyruvic transaminase/glutamic oxaloacetic transaminase (ALT/AST) increase, and proteinuria. Postoperatively, one grade 4a and eight grade 1-2 complications were noted. In comparison to patients with stable disease, responders exhibited significant differences in immune factors such as Arginase 1(ARG1), Melanoma antigen (MAGEs), Dendritic Cell (DC), TNF Superfamily Member 13 (TNFSF13), Apelin Receptor (APLNR), and C-C Motif Chemokine Ligand 3 Like 1 (CCL3-L1). The limitation of this trial was the small sample size. CONCLUSION: Neoadjuvant toripalimab combined with axitinib shows encouraging activity and acceptable toxicity in locally advanced clear cell RCC and warrants further study. TRIAL REGISTRATION NUMBER: clinicaltrials.gov, NCT04118855.


Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Axitinibe , Carcinoma de Células Renais , Neoplasias Renais , Terapia Neoadjuvante , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Axitinibe/uso terapêutico , Axitinibe/farmacologia , Masculino , Feminino , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Adulto , Estudos Prospectivos , Nefrectomia/métodos
2.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703850

RESUMO

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Assuntos
Cádmio , Mitocôndrias , Piroptose , Testículo , Animais , Cádmio/toxicidade , Masculino , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Piroptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Proteostase , Proteínas Mitocondriais/metabolismo , Exposição Ambiental/efeitos adversos , DNA Mitocondrial , Proteases Dependentes de ATP/metabolismo , Estresse Proteotóxico
3.
Cancer Cell Int ; 24(1): 147, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658931

RESUMO

BACKGROUND: Cell division cycle associated 5 (CDCA5) plays ontogenetic role in various human cancers. However, its specific function and regulatory mechanism in ccRCC remain uncertain. METHODS: Immunohistochemistry and western blots were performed to investigate the expression of CDCA5 in ccRCC tissues. Genetic knockdown and upregulation of CDCA5 were performed to investigate its functional roles in ccRCC proliferation, migration, apoptosis and sunitinib resistance. Furthermore, Co-IP assay and LC-MS/MS were performed to investigate the underlying mechanisms. RESULTS: We found that CDCA5 expression is frequently upregulated in ccRCC tumors and is associated with poor prognosis of ccRCC patients. Functionally, CDCA5 promotes proliferation, migration, and sunitinib resistance, while inhibiting apoptosis in ccRCC cells. In vivo mouse xenograft model confirms that silencing of CDCA5 drastically inhibits the growth of ccRCC. Mechanistically, we discovered that CDCA5 interacts with Eukaryotic Translation Elongation Factor 1 Alpha 1 (EEF1A1) to regulate mTOR signaling pathway, thereby promoting ccRCC progression. CONCLUSIONS: Taken together, our results demonstrate the significant role of CDCA5 in ccRCC progression. The findings may provide insights for the development of new treatment strategies targeting CDCA5 for ccRCC patients.

4.
Front Endocrinol (Lausanne) ; 15: 1343255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681772

RESUMO

Stem cell-based therapies exhibit considerable promise in the treatment of diabetes and its complications. Extensive research has been dedicated to elucidate the characteristics and potential applications of adipose-derived stromal/stem cells (ASCs). Three-dimensional (3D) culture, characterized by rapid advancements, holds promise for efficacious treatment of diabetes and its complications. Notably, 3D cultured ASCs manifest enhanced cellular properties and functions compared to traditional monolayer-culture. In this review, the factors influencing the biological functions of ASCs during culture are summarized. Additionally, the effects of 3D cultured techniques on cellular properties compared to two-dimensional culture is described. Furthermore, the therapeutic potential of 3D cultured ASCs in diabetes and its complications are discussed to provide insights for future research.


Assuntos
Tecido Adiposo , Diabetes Mellitus , Humanos , Tecido Adiposo/citologia , Diabetes Mellitus/terapia , Animais , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Complicações do Diabetes/terapia , Diferenciação Celular , Técnicas de Cultura de Células em Três Dimensões/métodos
5.
J Hazard Mater ; 470: 134142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555669

RESUMO

Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.


Assuntos
Cádmio , Poluentes Ambientais , Células Intersticiais do Testículo , Testículo , Testosterona , Ubiquitina-Proteína Ligases , Masculino , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Cádmio/toxicidade , Testosterona/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Poluentes Ambientais/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética
6.
Cell Death Dis ; 15(2): 151, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374146

RESUMO

Fumarate hydratase (FH) deficient renal cell carcinoma (RCC) is a type of tumor with definite metabolic disorder, but the mechanism of metabolic remodeling is still unclear. LncRNA was reported to closely correlate with cancer metabolism, however the biological role of LncRNA in the development of progression of FH-deficent RCC was not well studied either. FH-deficient RCC samples were collected in my hospital and used for RNA-sequencing and Mass spectrometry analysis. FH-deficient RCC cell line UOK262 and control pFH cells were used for in vitro experiments, including proliferation assay, transwell assay, western-blot, mass spectrometry and so on. PDX mouse model was used for further drug inhibition experiments in vivo. In this study, we analyzed the profiles of LncRNA and mRNA in FH-deficienct RCC samples, and we found that the LncRNA-MIR4435-2GH was specifically highly expressed in FH-deficient RCC compared with ccRCC. In vitro experiments demonstrated that MIR4435-2HG was regulated by Fumarate through histone demethylation, and the deletion of this gene could inhibit glutamine metabolism. RNA-pulldown experiments showed that MIR4435-2HG specifically binds to STAT1, which can transcriptionally activate GLS1. GLS1 inhibitor CB-839 could significantly suppress tumor growth in PDX tumor models. This study analyzed the molecular mechanism of MIR4435-2HG in regulating metabolic remodeling of FH-deficient RCC in clinical samples, cells and animal models by combining transcriptional and metabolic methods. We found that that GLS1 was a therapeutic target for this tumor, and MIR4435-2HG can be used as a drug sensitivity marker.


Assuntos
Carcinoma de Células Renais , Fumaratos , Neoplasias Renais , RNA Longo não Codificante , Animais , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Fumaratos/metabolismo , Glutamina , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , RNA Longo não Codificante/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA