Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 382: 110640, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473909

RESUMO

Diabetic kidney disease (DKD) is an essential cause of end-stage renal disease. The ongoing inflammatory response in the proximal tubule promotes the progression of DKD. Timely and effective blockade of the inflammatory process to protect the kidney during DKD progression is a proven strategy. The purpose of this study was to investigate the protective effect of loganin on diabetic nephropathy in vivo and in vitro and whether this effect was related to the inhibition of pyroptosis. The results indicated that loganin reduced fasting blood glucose, blood urea nitrogen and serum creatinine concentrations, and alleviated renal pathological changes in DKD mice. In parallel, loganin downregulated the expression of pyroptosis related proteins in the renal tubules of DKD mice and decreased serum levels of interleukin-1beta (IL-1ß) and interleukin-18 (IL-18). Furthermore, in vitro experiments showed that loganin attenuated high glucose-induced HK-2 cell injury by reducing the expression of pyroptosis-related proteins, and cytokine levels were also decreased. These fundings were also confirmed in the polyphyllin VI (PPVI) -induced HK-2 cell pyroptosis model. Loganin reduces high glucose induced HK-2 cells pyroptosis by inhibiting reactive oxygen species (ROS) production and NOD-like receptor protein 3 (NLRP3) inflammasome activation. In conclusion, the inhibition of pyroptosis via inhibition of the NLRP3/Caspase-1/Gasdermin D (GSDMD) pathway might be an essential mechanism for loganin treatment of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Proteínas NLR , Nefropatias Diabéticas/tratamento farmacológico , Rim/metabolismo , Glucose/farmacologia
2.
Virulence ; 13(1): 1434-1445, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35983964

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has been developing rapidly in recent years. It poses a severe peril to global health care, and the new strategies to against the MRSA is urgently needed. Sortase A (SrtA) regulates the anchoring of many surface proteins. Compounds repress Staphylococcus aureus (S. aureus) cysteine transpeptidase SrtA are considered adequate potent virulence inhibitors. Then, we describe the identification of an effective SrtA inhibitor, cyanidin chloride, a bioflavonoid compound isolated from various plants. It has a reversible inhibitory effect on SrtA activity at an IC50 of 21.91 µg/mL. As a SrtA inhibitor, cyanidin chloride antagonizes SrtA-related virulence phenotypes due to its breadth and specificity, including fibrinogen adhesion, A549 cell invasion, biofilm formation, and surface protein (SpA) anchoring. Subsequently, molecular docking and fluorescence quenching revealed that SrtA and cyanidin chloride had robust mutual affinity. Further mechanistic studies revealed that Arg-197, Gly-167, and Sep-116 were the key-binding sites mediating the interaction between SrtA and cyanidin chloride. Notably, a significant therapeutic effect of cyanidin chloride in vivo was also observed on the mouse pneumonia model induced by MRSA. In conclusion, our study indicates that cyanidin chloride potentially represents a new candidate SrtA inhibitor for S. aureus and potentially be developed as a new antivirulence agent.


Assuntos
Aminoaciltransferases , Staphylococcus aureus Resistente à Meticilina , Pneumonia , Infecções Estafilocócicas , Aminoaciltransferases/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Antocianinas , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/genética
3.
Front Pharmacol ; 13: 887387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903338

RESUMO

Hypopharyngeal squamous cell carcinoma (HSCC) is one of the high mortality cancers with a poor prognosis, which is driving the development of new chemotherapeutic agents. We identified the anticancer effects of a natural compound, solamargine (SM), on FaDU cells and explored its mechanism in terms of non-coding RNA. It was observed that SM inhibited the proliferation of FaDU cells with an IC50 of 5.17 µM. High-throughput sequencing data revealed that lncRNA HOXA11-AS was significantly downregulated in cells co-incubated with SM. Further assays demonstrated that SM-induced downregulation of lncRNA HOXA11-AS showed important implications for apoptosis. Given the properties of HOXA11-AS as a miR-155 sponge, we further confirmed that SM upregulated the expression of miR-155 in FaDU cells. C-Myc is a transcription factor that regulates cell differentiation and apoptosis, whose mRNA is considered to be targeted by miR-155. We showed that c-Myc expression was downregulated by SM and accompanied by increased apoptosis, which was consistent with the findings of transcriptome sequencing. Furthermore, SM administration suppressed xenograft tumor growth in a xenograft mouse model in vivo. In the light of the aforementioned findings, our results suggested that SM downregulated the expression of HOXA11-AS, which in turn induces apoptosis by downregulating c-Myc in FaDU, providing evidence for the anticancer effect of SM on HSCC and uncovering the effect of SM on non-coding RNAs as, at least partly, a mechanism of action.

4.
Biochem Pharmacol ; 199: 114982, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247333

RESUMO

The strategy of targeting virulence factor has received great attention as it barely develops bacterial resistance. Sortase A (SrtA) and caseinolytic peptidase P (ClpP), as important virulence factors, are considered to be ideal pharmacological targets for methicillin-resistant Staphylococcus aureus (MRSA) infection. Through screening hundreds of compounds, we found scutellarin, a natural flavonoid, markedly inhibited SrtA and ClpP activities of MRSA strain USA300 with an IC50 of 53.64 µg/mL and 107.00 µg/mL, respectively. Subsequently, we observed that scutellarin could inhibit the SrtA-related virulence of MRSA. To demonstrate whether scutellarin directly binding to SrtA, fluorescence quenching assay and molecular docking were performed and the results indicated that scutellarin directly bonded to SrtA molecule with a KA value of 7.58 × 104 L/mol. In addition to direct SrtA inhibition, scutellarin could also inhibit hemolytic activity of S. aureus by inhibiting the expression of Hla in a SrtA-independent manner. Further assays confirmed that scutellarin inhibited hemolysis by inhibiting ClpP. The combination of scutellarin and vancomycin showed enhancing inhibition of USA300 in vitro and in vivo, evidenced by decreased MIC from 3 µg/mL to 0.5 µg/mL and increased survival and improvement of lung pathology in pneumonia mice. Taken together, these results suggest that scutellarin exhibited di-inhibitory effects on SrtA and ClpP of USA300. The di-inhibition of virulence factors by scutellarin combined with vancomycin to prevent MRSA invasion of A549 cells and pneumonia in mice, indicating that scutellarin is expected to be a potential adjuvant against MRSA in the future.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia , Aminoaciltransferases , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Apigenina , Proteínas de Bactérias , Cisteína Endopeptidases , Glucuronatos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A , Staphylococcus aureus , Vancomicina/farmacologia , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA