Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1403070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015575

RESUMO

Background: The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods: Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results: To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions: Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.


Assuntos
Herpesvirus Suídeo 1 , Imunidade Inata , Pseudorraiva , Transdução de Sinais , Proteínas do Envelope Viral , Animais , Humanos , Camundongos , Células HEK293 , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Pseudorraiva/imunologia , Pseudorraiva/virologia , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/metabolismo , Ubiquitinação , Proteínas do Envelope Viral/metabolismo
2.
Microbiol Spectr ; 10(6): e0287122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36350141

RESUMO

Marek's disease virus (MDV) induces immunosuppression and neoplastic disease in chickens. The virus is controllable via an attenuated meq deletion mutant virus, which has the disadvantage of retaining the ability to induce lymphoid organ atrophy. To overcome this deficiency and produce more vaccine candidates, a recombinant MDV was generated from the highly virulent Md5BAC strain, in which both meq and a cytolytic replication-related gene, pp38, were deleted. Replication of the double deletion virus, Md5BAC ΔmeqΔpp38, was comparable with that of the parental virus in vitro. The double deletion virus was shown to be fully attenuated and to reduce lymphoid organ atrophy in vivo. Crucially, Md5BAC ΔmeqΔpp38 confers superior protection against highly virulent virus compared with a commercial vaccine strain, CVI988/Rispens. Transcriptomic profiling indicated that Md5BAC ΔmeqΔpp38 induced a different host immune response from CVI988/Rispens. In summary, a novel, effective, and safe vaccine candidate for prevention and control of MD caused by highly virulent MDV is reported. IMPORTANCE MDV is a highly contagious immunosuppressive and neoplastic pathogen. The virus can be controlled through vaccination via an attenuated meq deletion mutant virus that retains the ability to induce lymphoid organ atrophy. In this study, we overcame the deficiency by generating meq and pp38 double deletion mutant virus. Indeed, the successfully generated meq and pp38 double deletion mutant virus had significantly reduced replication capacity in vivo but not in vitro. It was fully attenuated and conferred superior protection efficacy against very virulent MDV challenge. In addition, the possible immunological protective mechanism of the double deletion mutant virus was shown to be different from that of the gold standard MDV vaccine, CVI988/Rispens. Overall, we successfully generated an attenuated meq deletion mutant virus and widened the range of potential vaccine candidates. Importantly, this study provides for the first time the theoretical basis of vaccination induced by fully attenuated gene-deletion mutant virus.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Doença de Marek , Doença de Marek , Proteínas Oncogênicas Virais , Doenças das Aves Domésticas , Animais , Doença de Marek/prevenção & controle , Doença de Marek/genética , Deleção de Genes , Proteínas Oncogênicas Virais/genética , Galinhas , Herpesvirus Galináceo 2/genética , Vacinas contra Doença de Marek/genética , Atrofia
3.
Viruses ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35891444

RESUMO

Pseudorabies virus (PRV) has evolved various strategies to escape host antiviral immune responses. However, it remains unclear whether and how PRV-encoded proteins modulate the RIG-I-like receptor (RLR)-mediated signals for immune evasion. Here, we show that the PRV tegument protein UL13 functions as an antagonist of RLR-mediated antiviral responses via suppression of the transcription of RIG-I and MDA5, but not LGP2. UL13 overexpression significantly inhibits both the mRNA and protein levels of RIG-I and MDA5, along with RIG-I- or MDA5-mediated antiviral immune responses, whereas overexpression of RIG-I or MDA5 counteracts such UL13-induced suppression. Mechanistically, UL13 suppresses the expression of RIG-I and MDA5 by inhibiting activation of the transcription factor NF-κB. Consequently, overexpression of p65 promotes the activation of RIG-I and MDA5 promoters. Moreover, deletion of the p65-binding sites in the promoters of RIG-I or MDA5 abolishes the suppression role of UL13. As a result, mutant PRV lacking UL13 elicits stronger host antiviral immune responses than PRV-WT. Hence, our results provide a novel functional role of UL13-induced suppression of host antiviral immunity through modulating receptors' transcription.


Assuntos
Herpesvirus Suídeo 1 , Animais , Antivirais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Herpesvirus Suídeo 1/metabolismo , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/metabolismo , Transdução de Sinais , Proteínas Virais/genética
4.
Arch Virol ; 161(11): 3081-93, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27518404

RESUMO

The binding motif of BF2*15 major histocompatibility complex (MHC) class I was explored by analyzing the interaction between an infectious bronchitis virus octapeptide and BF2*15, and the cytotoxic T lymphocyte (CTL) epitope from the nucleoprotein (NP) of H5N1 virus was identified using experimental methods. Computational methods, including homology modeling, molecular dynamics simulation, and molecular docking analysis, were used. The recombinant plasmid pCAGGS-NP was constructed, and NP expression was confirmed by indirect immunofluorescence and Western blot in transfected 293T cells. Antibodies against NP in pCAGGS-NP-inoculated specific-pathogen-free chickens were detected by enzyme-linked immunosorbent assay (ELISA). Interferon γ (IFN-γ) mRNA was quantified, and IFN-γ production was evaluated using quantitative reverse transcription PCR and capture ELISA, respectively. CD8(+) T-lymphocyte proliferation was detected using flow cytometric analysis. The BF2*15 MHC class I binding motif "x-Arg/Lys-x-x-x-Arg/Lys" was explored. Quantification of chicken IFN-γ mRNA, evaluation of IFN-γ production, and measurement of CD8(+) T-lymphocyte proliferation confirmed that the peptide NP67-74 of H5N1 was the BF2*15 MHC-class-I-restricted CTL epitope.


Assuntos
Epitopos de Linfócito T/metabolismo , Antígenos HLA-B/metabolismo , Virus da Influenza A Subtipo H5N1/imunologia , Proteínas de Ligação a RNA/imunologia , Linfócitos T Citotóxicos/imunologia , Proteínas do Core Viral/imunologia , Animais , Sítios de Ligação , Linhagem Celular , Galinhas , Humanos , Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA