Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 16(10): 2459-2472, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34525378

RESUMO

The pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been attributed to its ability to enter through the membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, it has been heavily speculated that angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy may modulate SARS-CoV-2 infection. In this study, exposure of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and human endothelial cells (hECs) to SARS-CoV-2 identified significant differences in protein coding genes involved in immunity, viral response, and cardiomyocyte/endothelial structure. Specifically, transcriptome changes were identified in the tumor necrosis factor (TNF), interferon α/ß, and mitogen-activated protein kinase (MAPK) (hPSC-CMs) as well as nuclear factor kappa-B (NF-κB) (hECs) signaling pathways. However, pre-treatment of hPSC-CMs or hECs with two widely prescribed antihypertensive medications, losartan and lisinopril, did not affect the susceptibility of either cell type to SARS-CoV-2 infection. These findings demonstrate the toxic effects of SARS-CoV-2 in hPSC-CMs/hECs and, taken together with newly emerging multicenter trials, suggest that antihypertensive drug treatment alone does not alter SARS-CoV-2 infection.


Assuntos
Anti-Hipertensivos/farmacologia , Tratamento Farmacológico da COVID-19 , Células Endoteliais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , COVID-19/genética , Células Cultivadas , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Lisinopril/farmacologia , Losartan/farmacologia , Miócitos Cardíacos/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Transcriptoma/efeitos dos fármacos
2.
J Pharmacol Exp Ther ; 369(1): 9-25, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30709867

RESUMO

Increasing evidence indicates that decreased brain blood flow, increased reactive oxygen species (ROS) production, and proinflammatory mechanisms accelerate neurodegenerative disease progression such as that seen in vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer's disease and related dementias. There is a critical clinical need for safe and effective therapies for the treatment and prevention of cognitive impairment known to occur in patients with VCID and chronic inflammatory diseases such as heart failure (HF), hypertension, and diabetes. This study used our mouse model of VCID/HF to test our novel glycosylated angiotensin-(1-7) peptide Ang-1-6-O-Ser-Glc-NH2 (PNA5) as a therapy to treat VCID and to investigate circulating inflammatory biomarkers that may be involved. We demonstrate that PNA5 has greater brain penetration compared with the native angiotensin-(1-7) peptide. Moreover, after treatment with 1.0/mg/kg, s.c., for 21 days, PNA5 exhibits up to 10 days of sustained cognitive protective effects in our VCID/HF mice that last beyond the peptide half-life. PNA5 reversed object recognition impairment in VCID/HF mice and rescued spatial memory impairment. PNA5 activation of the Mas receptor results in a dose-dependent inhibition of ROS in human endothelial cells. Last, PNA5 treatment decreased VCID/HF-induced activation of brain microglia/macrophages and inhibited circulating tumor necrosis factor α, interleukin (IL)-7, and granulocyte cell-stimulating factor serum levels while increasing that of the anti-inflammatory cytokine IL-10. These results suggest that PNA5 is an excellent candidate and "first-in-class" therapy for treating VCID and other inflammation-related brain diseases.


Assuntos
Angiotensina I/química , Angiotensina I/farmacologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Demência Vascular/complicações , Memória/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Angiotensina I/farmacocinética , Angiotensina I/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Eletrocardiografia , Glicosilação , Meia-Vida , Insuficiência Cardíaca/complicações , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos/farmacocinética , Fragmentos de Peptídeos/uso terapêutico , Proto-Oncogene Mas , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Memória Espacial/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
3.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30417081

RESUMO

Here we used mouse models of heart and brain ischemia to compare the inflammatory response to ischemia in the heart, a protein rich organ, to the inflammatory response to ischemia in the brain, a lipid rich organ. We report that ischemia-induced inflammation resolves between one and four weeks in the heart compared to between eight and 24 weeks in the brain. Importantly, we discovered that a second burst of inflammation occurs in the brain between four and eight weeks following ischemia, which coincided with the appearance of cholesterol crystals within the infarct. This second wave shares a similar cellular and molecular profile with atherosclerosis and is characterized by high levels of osteopontin (OPN) and matrix metalloproteinases (MMPs). In order to test the role of OPN in areas of liquefactive necrosis, OPN-/- mice were subjected to brain ischemia. We found that at seven weeks following stroke, the expression of pro-inflammatory proteins and MMPs was profoundly reduced in the infarct of the OPN-/- mice, although the number of cholesterol crystals was increased. OPN-/- mice exhibited faster recovery of motor function and a higher number of neuronal nuclei (NeuN) positive cells in the peri-infarct area at seven weeks following stroke. Based on these findings we propose that the brain liquefies after stroke because phagocytic cells in the infarct are unable to efficiently clear cholesterol rich myelin debris, and that this leads to the perpetuation of an OPN-dependent inflammatory response characterized by high levels of degradative enzymes.


Assuntos
Aterosclerose/complicações , Isquemia Encefálica/complicações , Encéfalo/patologia , Osteopontina/farmacologia , Acidente Vascular Cerebral/complicações , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/patologia , Acidente Vascular Cerebral/metabolismo
4.
Med Res Arch ; 6(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32149188

RESUMO

According to the CDC (2017), more women than men have died from heart disease over the last 20-25 years. On the contrary, premenopausal women are protected against heart and cardiovascular disease (CVD) compared to men. Following menopause, there is sharp rise in CVD mortality and morbidity in women compared to men indicating that women lose protection against CVD during menopause. This loss of CVD protection in women drives the CDC statistics. Life expectance of women has now reached 82 (almost 35 years longer than at the turn of the 20th century). Yet, women typically undergo menopause at 50-60 years of age, which means that women spend over 40% of their life in menopause. Therefore, menopausal women, and associated CVD risk, must be considered as distinct from an aging or senescent woman. Despite longstanding knowledge that premenopausal women are protected from CVD, our fundamental understanding regarding the shift in CVD risk with menopause remains inadequate and impedes our ability to develop sex-specific therapeutic strategies to combat menopausal susceptibility to CVD. This review provides a critical overview of clinical trials attempting to address CVD susceptibility postmenopausal using hormone replacement therapy. Next, we outline key deficiencies in pre-clinical menopause models and introduce an alternative to overcome these deficiencies. Finally, we discuss a novel connection between AMPK and estrogen-dependent pathways that may serve as a potential solution to increased CVD susceptibility in menopausal women.

5.
Biosci Rep ; 36(3)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27160081

RESUMO

The pleiotropic nature of oestradiol, the main oestrogen found in women, has been well described in the literature. Oestradiol is positioned to play a unique role since it can respond to environmental, genetic and non-genetic cues to affect genetic expression and cellular signalling. In breast cancer, oestradiol signalling has a dual effect, promoting or inhibiting cancer growth. The potential impact of oestradiol on tumorigenesis depends on the molecular and cellular characteristics of the breast cancer cell. In this review, we provide a broad survey discussing the cellular and molecular consequences of oestrogen signalling in breast cancer. First, we review the structure of the classical oestrogen receptors and resultant transcriptional (genomic) and non-transcriptional (non-genomic) signalling. We then discuss the nature of oestradiol signalling in breast cancer including the specific receptors that initiate these signalling cascades as well as potential outcomes, such as cancer growth, proliferation and angiogenesis. Finally, we examine cellular and molecular mechanisms underlying the dimorphic effect of oestrogen signalling in breast cancer.


Assuntos
Neoplasias da Mama/genética , Estrogênios/genética , Neovascularização Patológica/genética , Receptores de Estrogênio/química , Neoplasias da Mama/patologia , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Estradiol/química , Estradiol/genética , Estrogênios/química , Feminino , Humanos , Neovascularização Patológica/patologia , Receptores de Estrogênio/genética , Transdução de Sinais , Transcriptoma/genética
6.
Am J Physiol Heart Circ Physiol ; 311(1): H125-36, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199124

RESUMO

Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level.


Assuntos
Sinalização do Cálcio , Cardiomiopatia Hipertrófica Familiar/enzimologia , Contração Miocárdica , Miocárdio/enzimologia , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Predisposição Genética para Doença , Hidrólise , Cinética , Masculino , Camundongos Transgênicos , Mutação , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Fenótipo , Fosforilação , Caracteres Sexuais , Fatores Sexuais , Remodelação Ventricular
7.
Arch Biochem Biophys ; 601: 32-41, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26971467

RESUMO

Contractile perturbations downstream of Ca(2+) binding to troponin C, the so-called sarcomere-controlled mechanisms, represent the earliest indicators of energy remodeling in the diseased heart [1]. Central to cellular energy "sensing" is the adenosine monophosphate-activated kinase (AMPK) pathway, which is known to directly target myofilament proteins and alter contractility [2-6]. We previously showed that the upstream AMPK kinase, LKB1/MO25/STRAD, impacts myofilament function independently of AMPK [5]. Therefore, we hypothesized that the LKB1 complex associated with myofilament proteins and that alterations in energy signaling modulated targeting or localization of the LKB1 complex to the myofilament. Using an integrated strategy of myofilament mechanics, immunoblot analysis, co-immunoprecipitation, mass spectroscopy, and immunofluorescence, we showed that 1) LKB1 and MO25 associated with myofibrillar proteins, 2) cellular energy stress re-distributed AMPK/LKB1 complex proteins within the sarcomere, and 3) the LKB1 complex localized to the Z-Disk and interacted with cytoskeletal and energy-regulating proteins, including vinculin and ATP Synthase (Complex V). These data represent a novel role for LKB1 complex proteins in myofilament function and myocellular "energy" sensing in the heart.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Troponina C/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Cálcio/metabolismo , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Contração Muscular , Ratos , Ratos Sprague-Dawley , Sarcômeros/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 309(12): R1546-52, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26491098

RESUMO

Premenopausal females are resistant to the development of hypertension, and this protection is lost after the onset of menopause, resulting in a sharp increase in disease onset and severity. However, it is unknown how a fluctuating ovarian hormone environment during the transition from perimenopause to menopause impacts the onset of hypertension, and whether interventions during perimenopause prevent disease onset after menopause. A gradual transition to menopause was induced by repeated daily injections of 4-vinylcyclohexene diepoxide (VCD). ANG II (800 ng·kg(-1)·min(-1)) was infused into perimenopausal and menopausal female mice for 14 days. A separate cohort of mice received 17ß-estradiol replacement during perimenopause. ANG II infusion produced significantly higher mean arterial pressure (MAP) in menopausal vs. cycling females, and 17ß-estradiol replacement prevented this increase. In contrast, MAP was not significantly different when ANG II was infused into perimenopausal and cycling females, suggesting that female resistance to ANG II-induced hypertension is intact during perimenopause. ANG II infusion caused a significant glomerular hypertrophy, and hypertrophy was not impacted by hormonal status. Expression levels of aquaporin-2 (AQP2), a collecting duct protein, have been suggested to reflect blood pressure. AQP2 protein expression was significantly downregulated in the renal cortex of the ANG II-infused menopause group, where blood pressure was increased. AQP2 expression levels were restored to control levels with 17ß-estradiol replacement. This study indicates that the changing hormonal environment in the VCD model of menopause impacts the severity of ANG II-induced hypertension. These data highlight the utility of the ovary-intact VCD model of menopause as a clinically relevant model to investigate the physiological mechanisms of hypertension that occur in women during the transition into menopause.


Assuntos
Angiotensina II , Pressão Arterial/efeitos dos fármacos , Cicloexenos/administração & dosagem , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Menopausa/efeitos dos fármacos , Compostos de Vinila/administração & dosagem , Animais , Aquaporina 2/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Injeções Intraperitoneais , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Córtex Renal/patologia , Menopausa/metabolismo , Camundongos Endogâmicos C57BL , Perimenopausa , Fatores de Risco , Fatores de Tempo
9.
Biosci Rep ; 35(5)2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26374855

RESUMO

Normal and pathological stressors engage the AMP-activated protein kinase (AMPK) signalling axis to protect the cell from energetic pressures. Sex steroid hormones also play a critical role in energy metabolism and significantly modify pathological progression of cardiac disease, diabetes/obesity and cancer. AMPK is targeted by 17ß-oestradiol (E2), the main circulating oestrogen, but the mechanism by which E2 activates AMPK is currently unknown. Using an oestrogen receptor α/ß (ERα/ß) positive (T47D) breast cancer cell line, we validated E2-dependent activation of AMPK that was mediated through ERα (not ERß) by using three experimental strategies. A series of co-immunoprecipitation experiments showed that both ERs associated with AMPK in cancer and striated (skeletal and cardiac) muscle cells. We further demonstrated direct binding of ERs to the α-catalytic subunit of AMPK within the ßγ-subunit-binding domain. Finally, both ERs interacted with the upstream liver kinase B 1 (LKB1) kinase complex, which is required for E2-dependent activation of AMPK. We conclude that E2 activates AMPK through ERα by direct interaction with the ßγ-binding domain of AMPKα.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Proteínas Quinases Ativadas por AMP/química , Mama/enzimologia , Mama/metabolismo , Neoplasias da Mama/enzimologia , Domínio Catalítico , Linhagem Celular , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Humanos
10.
Am J Physiol Heart Circ Physiol ; 308(2): H135-45, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25398983

RESUMO

The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-ß1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex.


Assuntos
Adaptação Fisiológica , Dieta , Coração/fisiologia , Esforço Físico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Cardiomegalia Induzida por Exercícios , Caseínas/efeitos adversos , Caseínas/farmacologia , Feminino , Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Sexuais , Proteínas de Soja/farmacologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-26798768

RESUMO

The AMP-protein kinase (AMPK) pathway is very versatile as it regulates cellular energetic homeostasis in many different tissue types. An appreciation for the importance of AMPK signalling and regulation in cardiovascular and tumor biology is increasing. Recently, a link has been established between anti-cancer therapy and susceptibility to cardiac disease. It has been shown that some anti-cancer drugs lead to an increased risk of cardiac disease, underlined by de-regulation of AMPK signalling. This review explores the AMPK signalling axis in both cardiac and tumor metabolism. We then examine off-target AMPK inhibition by cancer drugs and how this may translate into increased risk of cardiovascular disease. Finally, we discuss the implication of deregulated AMPK signalling during different stages of cardiac hypertrophy. Better understanding of the molecular pathways behind pathological processes will lead to the development of more effective therapeutics for cancer and cardiovascular diseases.

12.
PLoS One ; 7(7): e41574, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844503

RESUMO

BACKGROUND: Recently, MicroRNAs (miR) and AMP-kinase (AMPK) have emerged as prominent players in the development of cardiac hypertrophy and heart failure. We hypothesized that components of the adenosine monophosphate-activated kinase (AMPK) pathway are targeted by miRs and alter AMPK signaling during pathological cardiac stress. METHODOLOGY/PRINCIPAL FINDINGS: Using a mouse model of hypertrophic cardiomyopathy (HCM), we demonstrated early elevation of miR-195 and miR-451 in HCM hearts, which targets MO25, a central component of the MO25/STRAD/LKB1 complex that acts as an upstream kinase for AMPK. We show functional targeting of MO25 by miR-195 and -451. Further in vitro interrogation of MO25 as a functional target validated this hypothesis where over-expression of miR-195 in C2C12 cells knocked down MO25 expression levels and downstream AMPK signaling (phosphorylation of Acetyl CoA carboxylase [ACC] and AMPK activity assay), similar to MO25 knockdown in C2C12 cells by siRNA. Parallel changes were measured in 60 day R403Q HCM male hearts that were rescued by short-term administration of AICAR, an AMPK agonist. CONCLUSIONS/SIGNIFICANCE: Elevated miR-195 targets the LKB1/AMPK signaling axis in HCM progression and implicates a functional role in HCM disease progression. MiR-195 may serve as potential therapeutics or therapeutic targets for heart disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenilato Quinase/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Quinases Ativadas por AMP , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Linhagem Celular , Progressão da Doença , Ativação Enzimática/genética , Humanos , Masculino , Camundongos , MicroRNAs/genética , Terapia de Alvo Molecular , Miocárdio/metabolismo , Miocárdio/patologia , Especificidade de Órgãos , Regulação para Cima/genética
13.
Endocrinology ; 153(9): 4470-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22778230

RESUMO

Hypertrophic cardiomyopathy (HCM) is more severe in male than female mice eating a soy-based diet. We sought to determine whether the detrimental effects are mediated by the phytoestrogens present in soy, the mechanism by which phytoestrogens act, and to test whether estrogen modulates the sexually dimorphic phenotype. A soy-free diet (casein based) supplemented with the predominant phytoestrogens in soy, genistein and daidzein, recapitulated the fibrotic, proapoptotic and negative hemodynamic effects of soy in male hearts. As with the soy diet, the hearts of female HCM mice were not negatively affected by the phytoestrogen-containing diet. To determine the role of estrogen in the sex differences mediated by diet in HCM, gonadectomies were performed and estrogen was administered to male and female HCM mice on a casein- or phytoestrogen-supplemented diet. Somewhat surprisingly, estrogen was not protective in male or female mice with HCM and, in fact, was lethal in phytoestrogen-fed male mice with HCM. Because genistein is a potent tyrosine kinase inhibitor and tyrosine kinase inhibition has been associated with cardiotoxicity, we tested its effects in isolated adult cardiac myocytes. Genistein inhibited different tyrosine kinases depending on sex and, in combination with estrogen, resulted in apoptosis only in adult male cardiac myocytes. Finally, we show that phytoestrogens led to distinct programs of gene expression in hearts from males vs. females with HCM, suggesting mechanisms by which males are more sensitive to the detrimental effects of phytoestrogens and females are protected. These results implicate the phytoestrogen genistein in mediating cardiac pathology in males with HCM and, importantly, establish that estrogen is not protective in the setting of HCM.


Assuntos
Estrogênios/farmacologia , Cardiopatias/induzido quimicamente , Coração/efeitos dos fármacos , Fitoestrógenos/farmacologia , Animais , Feminino , Genisteína/farmacologia , Masculino , Miocárdio/metabolismo , Fatores Sexuais
14.
Int Heart J ; 51(4): 277-84, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20716846

RESUMO

MEKK1 is a ubiquitously expressed mitogen activated protein kinase that is involved in tissue remodeling in a variety of settings including carotid artery blood flow cessation, wound healing, and breast adenocarcinoma intravasation. Here, we have tested the function of MEKK1 in genetic hypertrophic cardiomyopathy (HCM). MEKK1 was genetically deleted in C57Bl6/J mice expressing a mutant alpha-myosin heavy chain (HCM-MEKK1(-/-)). The absence of MEKK1 in HCM resulted in a more pronounced hypertrophy when compared to HCM mice with the MEKK1 gene intact without further increases in atrial natriuretic factor and beta-myosin heavy chain (MyHC) expression and fibrosis. Since MEKK1 is required for the induction of several tissue proteases, we tested the hypothesis that cardiac enlargement of HCM- MEKK1(-/-) mice was due to altered expression of urokinase-type plasminogen activator (uPA), JunB, matrix-metalloproteinase (MMP), and tissue inhibitors of MMPs (TIMPs). Because of its role in preventing apoptosis, we also tested the loss of MEKK1 on apoptotic mediators Bcl-2, cytochrome C, caspase-9, and caspase-3. uPA expression was decreased while JunB, MMP-9, caspase-9, and caspase-3 activities were elevated in HCM- MEKK1(-/-) hearts when compared to MEKK1(-/-), wild-type (WT), and HCM mice. Bcl-2 and Cyt C expression was elevated only in HCM mice. We conclude that the absence of MEKK1 induces a more pronounced cardiac hypertrophy to HCM through altered expression of proteases implicated in cardiac remodeling and increased apoptosis.


Assuntos
Cardiomiopatia Hipertrófica/enzimologia , Cardiomiopatia Hipertrófica/etiologia , MAP Quinase Quinase Quinase 1/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cadeias Pesadas de Miosina/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
17.
Am J Physiol Heart Circ Physiol ; 293(1): H246-59, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17337597

RESUMO

Potential regulation of two factors linked to physiological outcomes with left ventricular (LV) hypertrophy, resistance to apoptosis, and matching of metabolic capacity, by the transcription factor cyclic-nucleotide regulatory element binding protein (CREB), was examined in the two models of physiological LV hypertrophy: involuntary treadmill running of female Sprague-Dawley rats and voluntary exercise wheel running in female C57Bl/6 mice. Comparative studies were performed in the models of pathological LV hypertrophy and failure: the spontaneously hypertension heart failure (SHHF) rat and the hypertrophic cardiomyopathy (HCM) transgenic mouse, a model of familial idiopathic cardiomyopathy. Activating CREB serine-133 phosphorylation was decreased early in remodeling in response to both physiological (decreased 50-80%) and pathological (decreased 60-80%) hypertrophic stimuli. Restoration of LV CREB phosphorylation occurred concurrent with completion of physiological hypertrophy (94% of sedentary control), but remained decreased (by 90%) during pathological hypertrophy. In all models of hypertrophy, CREB phosphorylation/activation demonstrated strong positive correlations with 1) expression of the anti-apoptotic protein bcl-2 (a CREB-dependent gene) and subsequent reductions in the activation of caspase 9 and caspase 3; 2) expression of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1; a major regulator of mitochondrial content and respiratory capacity), and 3) LV mitochondrial respiratory rates and mitochondrial protein content. Exercise-induced increases in LV mitochondrial respiratory capacity were commensurate with increases observed in LV mass, as previously reported in the literature. Exercise training of SHHF rats and HCM mice in LV failure improved cardiac phenotype, increased CREB activation (31 and 118%, respectively), increased bcl-2 content, improved apoptotic status, and enhanced PGC-1 content and mitochondrial gene expression. Adenovirus-mediated expression of constitutively active CREB in neonatal rat cardiac recapitulated exercise-induced upregulation of PGC-1 content and mitochondrial oxidative gene expression. These data support a model wherein CREB contributes to physiological hypertrophy by enhancing expression of genes important for efficient oxidative capacity and resistance to apoptosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Células Cultivadas , Teste de Esforço , Hipertensão , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/diagnóstico , Masculino , Oxirredução , Ratos , Ratos Endogâmicos SHR , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/etiologia
18.
Am J Physiol Heart Circ Physiol ; 289(1): H455-65, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15734890

RESUMO

Voluntary cage wheel exercise has been used extensively to determine the physiological adaptation of cardiac and skeletal muscle in mice. In this study, we tested the effect of different loading conditions on voluntary cage wheel performance and muscle adaptation. Male C57Bl/6 mice were exposed to a cage wheel with no-resistance (NR), low-resistance (LR), or high-resistance (HR) loads for 7 wk. Power output was elevated (3-fold) under increased loading (LR and HR) conditions compared with unloaded (NR) exercise training. Only unloaded (NR) exercise induced an increase in heart mass, whereas only loaded (LR and HR) exercise training induced an increase in skeletal (soleus) muscle mass. Moreover, unloaded and loaded exercise training had a differential impact on the cross-sectional area of muscle fibers, depending on the type of myosin heavy chain expressed by each fiber. The biochemical adaptation of the heart was characterized by a decrease in genes associated with pathological (but not physiological) cardiac hypertrophy and a decrease in calcineurin expression in all exercise groups. In addition, transcriptional activity of myocyte enhancer factor-2 (MEF-2) was significantly decreased in the hearts of the LR group as determined by a MEF-2-dependent transgene driving the expression of beta-galactosidase. Phosphorylation of glycogen synthase kinase-3beta, protein kinase B (Akt), and p70 S6 kinase was increased only in the hearts of the NR group, consistent with the significant increase in cardiac mass. In conclusion, unloaded and loaded cage wheel exercise have a differential impact on cage wheel performance and muscle (cardiac and skeletal) adaptation.


Assuntos
Adaptação Fisiológica , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia , Animais , Calcineurina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Coração/fisiologia , Fatores de Transcrição MEF2 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Fatores de Regulação Miogênica , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 287(6): H2768-76, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15319208

RESUMO

How an individual's sex and genetic background modify cardiac adaptation to increased workload is a topic of great interest. We systematically evaluated morphological and physiological cardiac adaptation in response to voluntary and forced exercise. We found that sex/gender is a dominant factor in exercise performance (in two exercise paradigms and two mouse strains) and that females of one of these strains have greater capacity to increase their cardiac mass in response to similar amounts of exercise. To explore the biochemical mechanisms for these differences, we examined signaling pathways previously implicated in cardiac hypertrophy. Ca2+/calmodulin-dependent protein kinase (CaMK) activity was significantly greater in males compared with females and increased after voluntary cage-wheel exposure in both sexes, but the proportional increase in CaMK activity was twofold higher in females compared with males. Phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) was evident after 7 days of cage-wheel exposure in both sexes and remained elevated in females only by 21 days of exercise. Despite moderate increases in myocyte enhancer factor-2 (a downstream effector of CaMK) transcriptional activity and phosphorylation of Akt with exercise, there were no sex differences. Mitogen-activated protein kinase signaling components (p38 mitogen-activated protein kinase and extracellular regulated kinase 1/2) were not different between male and female mice and were not affected by exercise. We conclude that females have increased exercise capacity and increased hypertrophic response to exercise. We have also identified sex-specific differences in hypertrophic signaling within the cardiac myocyte that may contribute to sexual dimorphism in exercise and cardiac adaptation to exercise.


Assuntos
Adaptação Fisiológica/fisiologia , Sinalização do Cálcio/fisiologia , Coração/fisiologia , Esforço Físico/fisiologia , Caracteres Sexuais , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Glicogênio/metabolismo , Coração/anatomia & histologia , Hipertrofia , Fatores de Transcrição MEF2 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fatores de Regulação Miogênica , Condicionamento Físico Animal , Fatores de Transcrição/metabolismo
20.
J Physiol ; 547(Pt 3): 951-61, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12562915

RESUMO

Cyclic AMP-dependent protein kinase (PKA) targets contractile proteins, troponin-I (TnI) and myosin binding protein C (MyBP-C) in the heart and induces a decrease in myofilament Ca2+ sensitivity. Yet, the effect of sarcomere length (SL) change on Ca2+ sensitivity (length-dependent activation: LDA) following PKA-dependent phosphorylation is not clear. To clarify the role of PKA-dependent phosphorylation of TnI and MyBP-C on LDA in the heart, we examined LDA in skinned myocytes from a non-transgenic (NTG) and a transgenic murine model in which the native cardiac isoform (cTnI) was completely replaced by the slow skeletal isoform of TnI (ssTnI-TG) lacking the phosphorylation sites for PKA, while retaining PKA sites on MyBP-C. In NTG myocytes, PKA treatment decreased Ca2+ sensitivity at each SL, but enhanced the impact of SL change on Ca2+ sensitivity. Despite a greater sensitivity to Ca2+ and a reduction in LDA, neither Ca2+ responsiveness nor LDA was affected by PKA treatment in ssTnI-TG myocytes. To determine whether the above observations could be explained by the lateral separation between thick and thin filaments, as suggested by others, we measured interfilament spacing by X-ray diffraction as a function of SL in skinned cardiac trabeculae in the passive state from both NTG and ssTnI-TG models before and following treatment with PKA. Phosphorylation by PKA increased lattice spacing at every SL in NTG trabeculae. However, the relationship between SL and myofilament lattice spacing in ssTnI-TG was markedly shifted downward to an overall decreased myofilament lattice spacing following PKA treatment. We conclude: (1) PKA-dependent phosphorylation enhances length-dependent activation in NTG hearts; (2) replacement of native TnI with ssTnI increases Ca2+ sensitivity of tension but reduces length-dependent activation; (3) MyBP-C phosphorylation by PKA does not alter calcium responsiveness and induces a decrease in myofilament lattice spacing at all sarcomere lengths and (4) length-dependent activation in the heart cannot be entirely explained by alterations in myofilament lattice spacing.


Assuntos
Citoesqueleto de Actina/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Troponina I/genética , Troponina I/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Sarcômeros/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA