Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 61(17): 1723-1734, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35998361

RESUMO

Human polypyrimidine-binding splicing factor (PSF/SFPQ) is a tumor suppressor protein that regulates the gene expression of several proto-oncogenes and binds to the 5'-polyuridine negative-sense template (5'-PUN) of some RNA viruses. The activity of PSF is negatively regulated by long-noncoding RNAs, human metastasis associated in lung adenocarcinoma transcript-1 and murine virus-like 30S transcript-1 (VL30-1). PSF is a 707-amino acid protein that has a DNA-binding domain and two RNA recognition motifs (RRMs). Although the structure of the apo-truncated PSF is known, how PSF recognizes RNA remains elusive. Here, we report the 2.8 Å and 3.5 Å resolution crystal structures of a biologically active truncated construct of PSF (sPSF, consisting of residues 214-598) alone and in a complex with a 30mer fragment of VL30-1 RNA, respectively. The structure of the complex reveals how the 30mer RNA is recognized at two U-specific induced-fit binding pockets, located at the previously unrecognized domain-swapped, inter-subunit RRM1 (of the first subunit)-RRM2 (of the second subunit) interfaces that do not exist in the apo structure. Thus, the sPSF dimer appears to have two conformations in solution: one in a low-affinity state for RNA binding, as seen in the apo-structure, and the other in a high-affinity state for RNA binding, as seen in the sPSF-RNA complex. PSF undergoes an all or nothing transition between having two or no RNA-binding pockets. We predict that the RNA binds with a high degree of positive cooperativity. These structures provide an insight into a new regulatory mechanism that is likely involved in promoting malignancies and other human diseases.


Assuntos
RNA Longo não Codificante , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Fator de Processamento Associado a PTB/genética , Fator de Processamento Associado a PTB/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Biochemistry ; 61(18): 1966-1973, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044776

RESUMO

Remdesivir is an adenosine analogue that has a cyano substitution in the C1' position of the ribosyl moiety and a modified base structure to stabilize the linkage of the base to the C1' atom with its strong electron-withdrawing cyano group. Within the replication-transcription complex (RTC) of SARS-CoV-2, the RNA-dependent RNA polymerase nsp12 selects remdesivir monophosphate (RMP) over adenosine monophosphate (AMP) for nucleotide incorporation but noticeably slows primer extension after the added RMP of the RNA duplex product is translocated by three base pairs. Cryo-EM structures have been determined for the RTC with RMP at the nucleotide-insertion (i) site or at the i + 1, i + 2, or i + 3 sites after product translocation to provide a structural basis for a delayed-inhibition mechanism by remdesivir. In this study, we applied molecular dynamics (MD) simulations to extend the resolution of structures to the measurable maximum that is intrinsically limited by MD properties of these complexes. Our MD simulations provide (i) a structural basis for nucleotide selectivity of the incoming substrates of remdesivir triphosphate over adenosine triphosphate and of ribonucleotide over deoxyribonucleotide, (ii) new detailed information on hydrogen atoms involved in H-bonding interactions between the enzyme and remdesivir, and (iii) direct information on the catalytically active complex that is not easily captured by experimental methods. Our improved resolution of interatomic interactions at the nucleotide-binding pocket between remedesivir and the polymerase could help to design a new class of anti-SARS-CoV-2 inhibitors.


Assuntos
Trifosfato de Adenosina , Antivirais , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Alanina/química , Antivirais/química , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus , Desoxirribonucleotídeos , Hidrogênio , Nucleotídeos , RNA Viral/genética , Ribonucleotídeos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
3.
Biochemistry ; 51(22): 4609-17, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22616982

RESUMO

Residues in the nascent base pair binding pocket (NBP) of bacteriophage RB69 DNA polymerase (RB69pol) are responsible for base discrimination. Replacing Tyr567 with Ala leads to greater flexibility in the NBP, increasing the probability of misincorporation. We used the fluorescent cytosine analogue, 1,3-diaza-2-oxophenoxazine (tC(o)), to identify preinsertion step(s) altered by NBP flexibility. When tC(o) is the templating base in a wild-type (wt) RB69pol ternary complex, its fluorescence is quenched only in the presence of dGTP. However, with the RB69pol Y567A mutant, the fluorescence of tC(o) is also quenched in the presence of dATP. We determined the crystal structure of the dATP/tC(o)-containing ternary complex of the RB69pol Y567A mutant at 1.9 Å resolution and found that the incoming dATP formed two hydrogen bonds with an imino-tautomerized form of tC(o). Stabilization of the dATP/tC(o) base pair involved movement of the tC(o) backbone sugar into the DNA minor groove and required tilting of the tC(o) tricyclic ring to prevent a steric clash with L561. This structure, together with the pre-steady-state kinetic parameters and dNTP binding affinity, estimated from equilibrium fluorescence titrations, suggested that the flexibility of the NBP, provided by the Y567 to Ala substitution, led to a more favorable forward isomerization step resulting in an increase in dNTP binding affinity.


Assuntos
Substituição de Aminoácidos , Bacteriófagos/enzimologia , Citosina/análogos & derivados , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Alanina/genética , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Pareamento de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxiguanina/química , Nucleotídeos de Desoxiguanina/metabolismo , Isomerismo , Modelos Moleculares , Conformação Proteica , Proteínas Virais/química
4.
Biochemistry ; 51(7): 1476-85, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22304682

RESUMO

We have recently challenged the widely held view that 2,4-difluorotoluene (dF) is a nonpolar isosteric analogue of the nucleotide dT, incapable of forming hydrogen bonds (HBs). To gain a further understanding for the kinetic preference that favors dAMP insertion opposite a templating dF, a result that mirrors the base selectivity that favors dAMP insertion opposite dT by RB69 DNA polymerase (RB69pol), we determined presteady-state kinetic parameters for incorporation of four dNMPs opposite dF by RB69pol and solved the structures of corresponding ternary complexes. We observed that both the F2 and F4 substituent of dF in these structures serve as HB acceptors forming HBs either directly with dTTP and dGTP or indirectly with dATP and dCTP via ordered water molecules. We have defined the shape and chemical features of each dF/dNTP pair in the RB69pol active site without the corresponding phosphodiester-linkage constraints of dF/dNs when they are embedded in isolated DNA duplexes. These features can explain the kinetic preferences exhibited by the templating dF when the nucleotide incorporation is catalyzed by wild type RB69pol or its mutants. We further show that the shapes of the dNTP/dF nascent base pair differ markedly from the corresponding dNTP/dT in the pol active site and that these differences have a profound effect on their incorporation efficiencies.


Assuntos
Fosfatos de Dinucleosídeos/química , Tolueno/análogos & derivados , Catálise , Domínio Catalítico , Cristalização , DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Ligação de Hidrogênio , Cinética , Conformação Molecular , Nucleotídeos/química , Tolueno/química , Difração de Raios X
5.
Biochemistry ; 49(39): 8554-63, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20795733

RESUMO

Continuous oxidative damage inflicted on DNA produces 7,8-dihydro-8-oxoguanine (8-oxoG), a commonly occurring lesion that can potentially cause cancer by producing G → T transversions during DNA replication. Mild oxidation of 8-oxoG leads to the formation of hydantoins, specifically guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), which are 100% mutagenic because they encode almost exclusively the insertion of dAMP and dGMP (encoding G → T and G → C transversions, respectively). The wild-type (wt) pol α family DNA polymerase from bacteriophage RB69 (RB69pol) inserts dAMP and dGMP with low efficiency when situated opposite Gh. In contrast, the RB69pol Y567A mutant inserts both of these dNMPs opposite Gh with >100-fold higher efficiency than wt. We now report the crystal structure of the "closed" preinsertion complex for the Y567A mutant with dATP opposite a templating Gh (R-configuration) in a 13/18mer primer-template (P/T) at 2.0 Å resolution. The structure data reveal that the Y to A substitution provides the nascent base pair binding pocket (NBP) with the flexibility to accommodate Gh by allowing G568 to move in the major-to-minor groove direction of the P/T. Thus, Gh is rejected as a templating base by wt RB69pol because G568 is inflexible, preventing Gh from pairing with the incoming dATP or dGTP base.


Assuntos
Bacteriófagos/enzimologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Guanidinas/metabolismo , Hidantoínas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/genética , Modelos Moleculares , Proteínas Virais/genética
6.
Biochemistry ; 49(19): 4116-25, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20411947

RESUMO

Accurate copying of the genome by DNA polymerases is challenging due in part to the continuous damage inflicted on DNA, which results from its contact with reactive oxygen species (ROS), producing lesions such as 7,8-dihydro-8-oxoguanine (8-oxoG). The deleterious effects of 8-oxoG can be attributed to its dual coding potential that leads to G --> T transversions. The wild-type (wt) pol alpha family DNA polymerase from bacteriophage RB69 (RB69pol) prefers to insert dCMP as opposed to dAMP when situated opposite 8-oxoG by >2 orders of magnitude as demonstrated using pre-steady-state kinetics (k(pol)/K(d,app)). In contrast, the Y567A mutant of RB69pol inserts both dCMP and dAMP opposite 8-oxoG rapidly and with equal efficiency. We have determined the structures of preinsertion complexes for the Y567A mutant with dATP and dCTP opposite a templating 8-oxoG in a 13/18mer primer-template (P/T) at resolutions of 2.3 and 2.1 A, respectively. Our structures show that the 8-oxoG residue is in the anti conformation when paired opposite dCTP, but it flips to a syn conformation forming a Hoogstein base pair with an incoming dATP. Although the Y567A substitution does not significantly change the volume of the pocket occupied by anti-8-oxoG, it does provide residue G568 the flexibility to move deeper into the minor groove of the P/T to accommodate, and stabilize, syn-8-oxoG. These results support the hypothesis that it is the flexibility of the nascent base pair binding pocket (NBP) in the Y567A mutant that allows efficient insertion of dAMP opposite 8-oxoG.


Assuntos
DNA Polimerase Dirigida por DNA/química , Nucleotídeos de Desoxiadenina/química , Guanina/análogos & derivados , Tirosina/genética , Substituição de Aminoácidos , Pareamento de Bases , Sítios de Ligação , Primers do DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos de Desoxiadenina/metabolismo , Guanina/química , Guanina/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA