Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(12): 10436-10446, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38783480

RESUMO

Ion mobility mass spectrometry (IM-MS) can be used to analyze native proteins according to their size and shape. By sampling individual molecules, it allows us to study mixtures of conformations, as long as they have different collision cross sections and maintain their native conformation after dehydration and vaporization in the mass spectrometer. Even though conformational heterogeneity of prolyl oligopeptidase has been demonstrated in solution, it is not detectable in IM-MS. Factors that affect the conformation in solution, binding of an active site ligand, the stabilizing Ser554Ala mutation, and acidification do not qualitatively affect the collision-induced unfolding pattern. However, measuring the protection of accessible cysteines upon ligand binding provides a principle for the development of MS-based ligand screening methods.


Assuntos
Prolil Oligopeptidases , Conformação Proteica , Serina Endopeptidases , Prolil Oligopeptidases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Ligantes , Espectrometria de Mobilidade Iônica , Modelos Moleculares , Espectrometria de Massas/métodos , Domínio Catalítico , Humanos
2.
Sci Adv ; 10(7): eadl4628, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354247

RESUMO

Native mass spectrometry (MS) has become widely accepted in structural biology, providing information on stoichiometry, interactions, homogeneity, and shape of protein complexes. Yet, the fundamental assumption that proteins inside the mass spectrometer retain a structure faithful to native proteins in solution remains a matter of intense debate. Here, we reveal the gas-phase structure of ß-galactosidase using single-particle cryo-electron microscopy (cryo-EM) down to 2.6-Å resolution, enabled by soft landing of mass-selected protein complexes onto cold transmission electron microscopy (TEM) grids followed by in situ ice coating. We find that large parts of the secondary and tertiary structure are retained from the solution. Dehydration-driven subunit reorientation leads to consistent compaction in the gas phase. By providing a direct link between high-resolution imaging and the capability to handle and select protein complexes that behave problematically in conventional sample preparation, the approach has the potential to expand the scope of both native mass spectrometry and cryo-EM.


Assuntos
Proteínas , Manejo de Espécimes , Microscopia Crioeletrônica/métodos , Proteínas/química , Espectrometria de Massas/métodos , beta-Galactosidase , Manejo de Espécimes/métodos
3.
J Proteomics ; 173: 22-31, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29197583

RESUMO

The study of protein glycosylation can be regarded as an intricate but very important task, making glycomics one of the most challenging and interesting, albeit under-researched, type of "omics" science. Complexity escalates remarkably when considering that carbohydrates can form severely branched structures with many different constituents, which often leads to the formation of multiple isomers. In this regard, ion mobility (IM) spectrometry has recently demonstrated its power for the separation of isomeric compounds. In the present work, the potential of traveling wave IM (TWIMS) for the separation of isomeric glycoconjugates was evaluated, using mouse transferrin (mTf) as model glycoprotein. Particularly, we aim to assess the performance of this platform for the separation of isomeric glycoconjugates due to the type of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan level. Straightforward separation of isomers was achieved with the analysis of released glycans, as opposed to the glycopeptides which showed a more complex pattern. Finally, the developed methodology was applied to serum samples of mice, to investigate its robustness when analyzing real complex samples. BIOLOGICAL SIGNIFICANCE: Ion mobility mass spectrometry is a promising analytical technique for the separation of glycoconjugate isomers due to type of sialic acid linkage. The impact of such a small modification in the glycan structure is more evident in smaller analytes, reason why the analysis of free glycans was easier compared to the intact protein or the glycopeptides. The established methodology could be regarded as starting point in the separation of highly decorated glycoconjugates. This is an important topic nowadays, as differences in the abundance of some glycan isomers could be the key for the early diagnosis, control or differentiation of certain diseases, such as inflammation or cancer.


Assuntos
Glicômica/métodos , Espectrometria de Mobilidade Iônica/métodos , Isomerismo , Animais , Glicosilação , Espectrometria de Mobilidade Iônica/normas , Camundongos , Ácido N-Acetilneuramínico/síntese química , Polissacarídeos/análise , Transferrina/química
4.
J Inorg Biochem ; 173: 66-78, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28501743

RESUMO

The cytoglobins of the Antarctic fish Chaenocephalus aceratus and Dissostichus mawsoni have many features in common with human cytoglobin. These cytoglobins are heme proteins in which the ferric and ferrous forms have a characteristic hexacoordination of the heme iron, i.e. axial ligation of two endogenous histidine residues, as confirmed by electron paramagnetic resonance, resonance Raman and optical absorption spectroscopy. The combined spectroscopic analysis revealed only small variations in the heme-pocket structure, in line with the small variations observed for the redox potential. Nevertheless, some striking differences were also discovered. Resonance Raman spectroscopy showed that the stabilization of an exogenous heme ligand, such as CO, occurs differently in human cytoglobin in comparison with Antarctic fish cytoglobins. Furthermore, while it has been extensively reported that human cytoglobin is essentially monomeric and can form an intramolecular disulfide bridge that can influence the ligand binding kinetics, 3D modeling of the Antarctic fish cytoglobins indicates that the cysteine residues are too far apart to form such an intramolecular bridge. Moreover, gel filtration and mass spectrometry reveal the occurrence of non-covalent multimers (up to pentamers) in the Antarctic fish cytoglobins that are formed at low concentrations. Stabilization of these oligomers by disulfide-bridge formation is possible, but not essential. If intermolecular disulfide bridges are formed, they influence the heme-pocket structure, as is shown by EPR measurements.


Assuntos
Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Globinas/química , Globinas/metabolismo , Animais , Regiões Antárticas , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Citoglobina , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Cinética , Espectrometria de Massas , Ligação Proteica , Análise Espectral Raman
5.
J Cell Biol ; 216(5): 1357-1369, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404644

RESUMO

Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas , Canais de Translocação SEC/metabolismo , Escherichia coli/citologia , Domínios Proteicos , Proteínas SecA
6.
J Phys Chem Lett ; 8(6): 1105-1112, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28207277

RESUMO

Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multistep simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-ß peptide (Aß(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ∼0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the picosecond-time scale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the millisecond time scale). However, the structural changes associated with the process do not significantly affect the structural determinants.


Assuntos
Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Simulação de Dinâmica Molecular , Peptídeos , Conformação Proteica , Prótons
7.
J Biol Chem ; 290(7): 4178-91, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25505247

RESUMO

The multisubunit cullin RING E3 ubiquitin ligases (CRLs) target post-translationally modified substrates for ubiquitination and proteasomal degradation. The suppressors of cytokine signaling (SOCS) proteins play important roles in inflammatory processes, diabetes, and cancer and therefore represent attractive targets for therapeutic intervention. The SOCS proteins, among their other functions, serve as substrate receptors of CRL5 complexes. A member of the CRL family, SOCS2-EloBC-Cul5-Rbx2 (CRL5(SOCS2)), binds phosphorylated growth hormone receptor as its main substrate. Here, we demonstrate that the components of CRL5(SOCS2) can be specifically pulled from K562 human cell lysates using beads decorated with phosphorylated growth hormone receptor peptides. Subsequently, SOCS2-EloBC and full-length Cul5-Rbx2, recombinantly expressed in Escherichia coli and in Sf21 insect cells, respectively, were used to reconstitute neddylated and unneddylated CRL5(SOCS2) complexes in vitro. Finally, diverse biophysical methods were employed to study the assembly and interactions within the complexes. Unlike other E3 ligases, CRL5(SOCS2) was found to exist in a monomeric state as confirmed by size exclusion chromatography with inline multiangle static light scattering and native MS. Affinities of the protein-protein interactions within the multisubunit complex were measured by isothermal titration calorimetry. A structural model for full-size neddylated and unneddylated CRL5(SOCS2) complexes is supported by traveling wave ion mobility mass spectrometry data.


Assuntos
Proteínas Culina/metabolismo , Conformação Proteica , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Elonguina , Humanos , Células K562 , Espectrometria de Massas , Modelos Moleculares , Proteína NEDD8 , Ligação Proteica , Proteínas Supressoras da Sinalização de Citocina/química , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Ubiquitinas/química , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA