Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Physiol Rep ; 12(7): e15991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605421

RESUMO

Skeletal muscle mass is critical for activities of daily living. Resistance training maintains or increases muscle mass, and various strategies maximize the training adaptation. Mesenchymal stem cells (MSCs) are multipotent cells with differential potency in skeletal muscle cells and the capacity to secrete growth factors. However, little is known regarding the effect of intramuscular injection of MSCs on basal muscle protein synthesis and catabolic systems after resistance training. Here, we measured changes in basal muscle protein synthesis, the ubiquitin-proteasome system, and autophagy-lysosome system-related factors after bouts of resistance exercise by intramuscular injection of MSCs. Mice performed three bouts of resistance exercise (each consisting of 50 maximal isometric contractions elicited by electrical stimulation) on the right gastrocnemius muscle every 48 h, and immediately after the first bout, mice were intramuscularly injected with either MSCs (2.0 × 106 cells) labeled with green fluorescence protein (GFP) or vehicle only placebo. Seventy-two hours after the third exercise bout, GFP was detected only in the muscle injected with MSCs with concomitant elevation of muscle protein synthesis. The injection of MSCs also increased protein ubiquitination. These results suggest that the intramuscular injection of MSCs augmented muscle protein turnover at the basal state after consecutive resistance exercise.


Assuntos
Células-Tronco Mesenquimais , Treinamento Resistido , Humanos , Masculino , Camundongos , Animais , Injeções Intramusculares , Proteínas Musculares/metabolismo , Atividades Cotidianas , Músculo Esquelético/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
EMBO Rep ; 25(3): 1176-1207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316902

RESUMO

For mucociliary clearance of pathogens, tracheal multiciliated epithelial cells (MCCs) organize coordinated beating of cilia, which originate from basal bodies (BBs) with basal feet (BFs) on one side. To clarify the self-organizing mechanism of coordinated intracellular BB-arrays composed of a well-ordered BB-alignment and unidirectional BB-orientation, determined by the direction of BB to BF, we generated double transgenic mice with GFP-centrin2-labeled BBs and mRuby3-Cep128-labeled BFs for long-term, high-resolution, dual-color live-cell imaging in primary-cultured tracheal MCCs. At early timepoints of MCC differentiation, BB-orientation and BB-local alignment antecedently coordinated in an apical microtubule-dependent manner. Later during MCC differentiation, fluctuations in BB-orientation were restricted, and locally aligned BB-arrays were further coordinated to align across the entire cell (BB-global alignment), mainly in an apical intermediate-sized filament-lattice-dependent manner. Thus, the high coordination of the BB-array was established for efficient mucociliary clearance as the primary defense against pathogen infection, identifying apical cytoskeletons as potential therapeutic targets.


Assuntos
Corpos Basais , Citoesqueleto , Camundongos , Animais , Microtúbulos , Cílios , Células Epiteliais
3.
Physiol Rep ; 11(23): e15855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38086691

RESUMO

TRPM8 agonist has been reported to promote osteogenic differentiation of mesenchymal stem cells (MSCs), therefore we evaluated whether cooling-induced activation of TRPM8 promotes myogenic differentiation of MSCs. We used 5-azacytidine as a myogenic differentiation inducer in murine bone marrow-derived MSCs. Addition of menthol, a TRPM8 agonist, to the differentiation induction medium significantly, increased the percentage of MyoD-positive cells, a specific marker of myogenic differentiation. We performed intracellular Ca2+ imaging experiments using fura-2 to confirm TRPM8 activation by cooling stimulation. The results confirmed that intracellular Ca2+ concentration ([Ca2+ ]i) increases due to TRPM8 activation, and TRPM8 antagonist inhibits increase in [Ca2+ ]i at medium temperatures below 19°C. We also examined the effect of cooling exposure time on myogenic differentiation of MSCs using an external cooling stimulus set at 17°C. The results showed that 60 min of cooling had an acceleratory effect on differentiation (2.18 ± 0.27 times). We observed that the TRPM8 antagonist counteracted the differentiation-promoting effect of the cooling. These results suggest that TRPM8 might modulate the multiple differentiation pathways of MSCs, and that cooling is an effective way of activating TRPM8, which regulates MSCs differentiation in vitro.


Assuntos
Células-Tronco Mesenquimais , Canais de Cátion TRPM , Camundongos , Animais , Osteogênese , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Temperatura Baixa , Azacitidina/metabolismo , Azacitidina/farmacologia , Canais de Cátion TRPM/metabolismo
4.
Cell Stem Cell ; 30(11): 1486-1502.e9, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922879

RESUMO

Organ regeneration requires dynamic cell interactions to reestablish cell numbers and tissue architecture. While we know the identity of progenitor cells that replace lost tissue, the transient states they give rise to and their role in repair remain elusive. Here, using multiple injury models, we find that alveolar fibroblasts acquire distinct states marked by Sfrp1 and Runx1 that influence tissue remodeling and reorganization. Unexpectedly, ablation of alveolar epithelial type-1 (AT1) cells alone is sufficient to induce tissue remodeling and transitional states. Integrated scRNA-seq followed by genetic interrogation reveals RUNX1 is a key driver of fibroblast states. Importantly, the ectopic induction or accumulation of epithelial transitional states induce rapid formation of transient alveolar fibroblasts, leading to organ-wide fibrosis. Conversely, the elimination of epithelial or fibroblast transitional states or RUNX1 loss, leads to tissue simplification resembling emphysema. This work uncovered a key role for transitional states in orchestrating tissue topologies during regeneration.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Pulmão , Células Epiteliais , Células-Tronco , Comunicação Celular
5.
Am J Respir Cell Mol Biol ; 69(3): 255-265, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315312

RESUMO

Targeted delivery of transgenes to tissue-resident stem cells and related niches offers avenues for interrogating pathways and editing endogenous alleles for therapeutic interventions. Here, we survey multiple adeno-associated virus (AAV) serotypes, administered via intranasal and retroorbital routes in mice, to target lung alveolar stem cell niches. We found that AAV5, AAV4, and AAV8 efficiently and preferentially transduce alveolar type-2 stem cells (AT2s), endothelial cells, and PDGFRA+ fibroblasts, respectively. Notably, some AAVs show different cell tropisms depending on the route of administration. Proof-of-concept experiments reveal the versatility of AAV5-mediated transgenesis for AT2-lineage labeling, clonal cell tracing after cell ablation, and conditional gene inactivation in both postnatal and adult mouse lungs in vivo. AAV6, but not AAV5, efficiently transduces both mouse and human AT2s in alveolar organoid cultures. Furthermore, AAV5 and AAV6 can be used to deliver guide RNAs and transgene cassettes for homologous recombination in vivo and ex vivo, respectively. Using this system coupled with clonal derivation of AT2 organoids, we demonstrate efficient and simultaneous editing of multiple loci, including targeted insertion of a payload cassette in AT2s. Taken together, our studies highlight the powerful utility of AAVs for interrogating alveolar stem cells and other specific cell types both in vivo and ex vivo.


Assuntos
Dependovirus , Células Endoteliais , Camundongos , Animais , Humanos , Dependovirus/genética , Transdução Genética , Vetores Genéticos , Técnicas de Transferência de Genes , Células-Tronco
6.
Sci Rep ; 12(1): 21374, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494492

RESUMO

Palpation is widely used as the initial medical diagnosis. Integration of micro tactile sensors and artificial muscles enables a soft microfinger for active touch sensing using its bending actuation. Active touch sensing by pushing-in motion of microfinger enables to evaluate stiffness distribution on an elastic object. Due to its compactness, the microfinger can enter a narrow space, such as gastrointestinal and abdominal spaces in a body. However, a microfinger can only touch and sense limited points. We aim at efficient method for searching a stiffness singular part in an elastic object by the directional touch sensing of a microfinger. This study presents a microfinger for active touch sensing using bending and push-in actuation and proposes an algorithm utilizing directivity in touch sensing by a microfinger for efficient localization of the stiffness singular part in an object. A gelatin block structure with a small rigid ball was prepared and touch sensed by the microfinger. Consequently, the position of the buried rigid ball could be efficiently identified based on the proposed algorithm. This result implies that the proposed method has potential applications in endoscopic medical diagnosis, particularly in identifying tumor positions.


Assuntos
Percepção do Tato , Tato , Palpação/métodos , Endoscopia , Algoritmos
7.
Biotechnol Rep (Amst) ; 36: e00766, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36245695

RESUMO

Three-dimensional cell spheroids are superior cell-administration form for cell-based therapy which generally exhibit superior functionality and long-term survival after transplantation. Here, we nondestructively measured the oxygen consumption rate of cell spheroids using an on-chip electrochemical device (OECD) and examined whether this rate can be used as a marker to estimate the quality of cell spheroids. Cell spheroids containing NanoLuc luciferase-expressing mouse mesenchymal stem cell line C3H10T1/2 (C3H10T1/2/Nluc) were prepared. Spheroids of high or low quality were prepared by altering the medium change frequency. After transplantation into mice, the high-quality C3H10T1/2/Nluc spheroids exhibited a higher survival rate than the low-quality ones. The oxygen consumption rate of the high-quality C3H10T1/2/Nluc spheroids was maintained at high levels, whereas that of the low-quality spheroids decreased with time. These results indicate that OECD-based measurement of the oxygen consumption rate can be used to estimate the quality of cell spheroids without destructive analysis of the spheroids.

8.
iScience ; 25(10): 105114, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185377

RESUMO

Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.

9.
Biol Pharm Bull ; 45(7): 962-967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35786604

RESUMO

Sarcopenia is not only a major cause of disability but also a risk factor for obesity and diabetes in elderly persons. Exercise is an effective method for improving the sarcopenic condition by inducing the secretion of interleukin (IL)-6, which has the capacities to both promote muscle hypertrophy and regulate lipid metabolism and glucose homeostasis, by skeletal muscle. We previously showed that mesenchymal stem cells (MSCs) promote IL-6 secretion by lipopolysaccharide-stimulated C2C12 mouse skeletal muscle myotubes via paracrine mechanisms. Therefore, in this study, we investigated the effect of paracrine actions of MSCs on IL-6 and proinflammatory cytokine expression in contractile C2C12 myotubes by applying electrical stimulation. IL-6 secretion by C2C12 myotubes was increased by electrical stimulation, and a more significant increase in IL-6 secretion was observed in electrically stimulated C2C12 myotubes cultured in conditioned medium from MSCs. The activation of nuclear factor-κB in C2C12 myotubes was also promoted by the combination of conditioned medium from MSCs and electrical stimulation. Moreover, the increases in tumor necrosis factor-α and IL-1ß mRNA expression in C2C12 myotubes induced by electrical stimulation were suppressed by culture in conditioned medium from MSCs. The present findings suggest that MSCs transplantation or injection of their extracellular vesicles improve the therapeutic effect of exercise against sarcopenia without exacerbating inflammation.


Assuntos
Células-Tronco Mesenquimais , Sarcopenia , Animais , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Expressão Gênica , Interleucina-6/genética , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fibras Musculares Esqueléticas , Sarcopenia/metabolismo
10.
Biotechnol J ; 17(1): e2100137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34581003

RESUMO

BACKGROUND: Because of the excellent therapeutic potential, mesenchymal stem cells (MSCs) have been used as cell therapeutics for various diseases. However, the survival rate and duration of MSCs after transplantation are extremely low and short, respectively. To solve these problems, in this study, we prepared multicellular spheroids of MSCs and investigated their survival and function after intravenous injection in mice. METHODS AND RESULTS: The murine adipose-derived MSC line m17.ASC was cultured in agarose-based microwell plates to obtain size-controlled m17.ASC spheroids of an average diameter and cell number of approximately 170 µm and 1100 cells/spheroid, respectively. The intravenously injected m17.ASC spheroids mainly accumulated in the lung and showed a higher survival rate than suspended m17.ASC cells during the experimental period of 7 days. m17.ASC spheroids efficiently reduced the lipopolysaccharide-induced increase in plasma concentrations of interleukin-6 and tumor necrosis factor-α. CONCLUSIONS: These results indicate that spheroid formation improved the pulmonary delivery and survival of MSCs, as well as their therapeutic potential against inflammatory pulmonary diseases.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Tecido Adiposo , Animais , Injeções Intravenosas , Pulmão , Camundongos , Esferoides Celulares
11.
Biol Pharm Bull ; 44(10): 1458-1464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602554

RESUMO

Multicellular spheroids are expected to be used for in vivo-like tissue models and cell transplantation. Microwell devices are useful for the fabrication of multicellular spheroids to improve productivity and regulate their size. However, the high cell density in microwell devices leads to accelerated cell death. In this study, we developed O2-generating microwells by incorporating calcium peroxide (CaO2) into polydimethylsiloxane (PDMS)-based microwells. The CaO2-containing PDMS was shown to generate O2 for 3 d. Then, CaO2-containing PDMS was used to fabricate O2-generating microwells using a micro-molding technique. When human hepatocellular carcinoma (HepG2) spheroids were prepared using the conventional microwells, the O2 concentration in the culture medium reduced to approx. 67% of the cell-free level. In contrast, the O2-generating microwells maintained O2 at constant levels. The HepG2 spheroids prepared using the O2-generating microwells had a larger number of live cells than those prepared using the conventional microwells. In addition, the O2-generating microwells rescued hypoxia in the HepG2 spheroids and increased cell viability. Lastly, the O2-generating microwells were also useful for the preparation of multicellular spheroids of other cell types (i.e., MIN6, B16-BL6, and adipose-derived stem cells) with high cell viability. These results showed that the O2-generating microwells are useful for preparing multicellular spheroids with high cell viability.


Assuntos
Técnicas de Cultura de Células/instrumentação , Peróxidos/farmacologia , Esferoides Celulares/fisiologia , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Dimetilpolisiloxanos/química , Humanos , Oxigênio/metabolismo , Peróxidos/química
12.
Sci Rep ; 11(1): 21224, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707171

RESUMO

Skeletal muscle mass is critical for good quality of life. Mesenchymal stem cells (MSCs) are multipotent stem cells distributed across various tissues. They are characterized by the capacity to secrete growth factors and differentiate into skeletal muscle cells. These capabilities suggest that MSCs might be beneficial for muscle growth. Nevertheless, little is known regarding the effects on muscle protein anabolic and catabolic systems of intramuscular injection of MSCs into skeletal muscle. Therefore, in the present study, we measured changes in mechanistic target of rapamycin complex 1 (mTORC1) signaling, the ubiquitin-proteasome system, and autophagy-lysosome system-related factors after a single intramuscular injection of MSCs with green fluorescence protein (GFP) into mouse muscles. The intramuscularly-injected MSCs were retained in the gastrocnemius muscle for 7 days after the injection, indicated by detection of GFP and expression of platelet-derived growth factor receptor-alpha. The injection of MSCs increased the expression of satellite cell-related genes, activated mTORC1 signaling and muscle protein synthesis, and increased protein ubiquitination and autophagosome formation (indicated by the expression of microtubule-associated protein 1 light chain 3-II). These results suggest that the intramuscular injection of MSCs activated muscle anabolic and catabolic systems and accelerated muscle protein turnover.


Assuntos
Autofagia , Transplante de Células-Tronco Mesenquimais/métodos , Músculo Esquelético/metabolismo , Proteólise , Animais , Células Cultivadas , Injeções Intramusculares , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Ubiquitinação
13.
Intern Med ; 60(24): 3927-3935, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34148959

RESUMO

A 78-year-old man presented with hypercalcemia and renal disease with high serum IgG4 and positive myeloperoxidase anti-neutrophil cytoplasmic antibody (MPO-ANCA), exhibiting sarcoidosis-like chest findings. A renal biopsy revealed tubulointerstitial nephritis, membranous nephropathy (MN), and sub-capsular lymphoid aggregates without fulfilling the diagnostic criteria of IgG4-related disease or sarcoidosis. Steroid therapy ameliorated the serological and renal abnormalities. After 5 years, following gradual increases in the neutrophil count and upper respiratory infection (URI), necrotizing crescentic glomerulonephritis (NCGN) developed with an increased serum MPO-ANCA level. These results suggest that in the presence of MPO-ANCA in immune senescence, the persistent neutrophil increase with URI may lead to the development of NCGN.


Assuntos
Glomerulonefrite Membranosa , Glomerulonefrite , Idoso , Anticorpos Anticitoplasma de Neutrófilos , Glomerulonefrite/complicações , Glomerulonefrite/diagnóstico , Humanos , Rim , Masculino , Peroxidase
14.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33929515

RESUMO

Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.


Assuntos
Proteínas de Transporte/genética , Cílios/genética , Depuração Mucociliar/genética , Traqueia/crescimento & desenvolvimento , Animais , Corpos Basais/metabolismo , Polaridade Celular/genética , Células Epiteliais/metabolismo , Camundongos , Camundongos Knockout , Microtúbulos/genética , Traqueia/metabolismo
15.
Biol Pharm Bull ; 43(8): 1220-1225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741942

RESUMO

The multicellular spheroid three-dimensional cell culture system can be used as a formulation for cell-based therapy. However, the viability and functions of the cells in the core region of the spheroid tend to decrease because of limited oxygen supply. In this study, we incorporated gelatin microspheres (GMS) into HepG2 human hepatocyte spheroids to allow oxygen to reach the spheroid core. GMS with an approximate diameter of 37 µm were fabricated by water-in-oil emulsification followed by freeze drying. GMS-containing HepG2 spheroids (GMS/HepG2 spheroids) were prepared by incubation of the cells with GMS at various mixing ratios in agarose gel-based microwells. Increasing the GMS ratio increased the diameter of the spheroids, and few spheroids formed with excess GMS. HepG2 cells in the GMS/HepG2 spheroids were more oxygenated than those in the GMS-free spheroids. GMS incorporation increased the viability of HepG2 cells in the spheroids and increased the CYP1A1 activity of the cells to metabolize 7-ethoxyresorufin, although mRNA expression of the CYP1A1 gene was hardly affected by GMS incorporation. These results indicate that incorporating GMS into HepG2 spheroids improves the hypoxic microenvironment in the spheroids and increases cell viability and CYP1A1 metabolic activity.


Assuntos
Gelatina/química , Hepatócitos/fisiologia , Microesferas , Oxigênio/metabolismo , Esferoides Celulares/metabolismo , Sobrevivência Celular , Citocromo P-450 CYP1A1/metabolismo , Células Hep G2 , Humanos
16.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31399484

RESUMO

The paracellular barrier function of tight junctions (TJs) in epithelial cell sheets is robustly maintained against mechanical fluctuations, by molecular mechanisms that are poorly understood. Vinculin is an adaptor of a mechanosensory complex at the adherens junction. Here, we generated vinculin KO Eph4 epithelial cells and analyzed their confluent cell-sheet properties. We found that vinculin is dispensable for the basic TJ structural integrity and the paracellular barrier function for larger solutes. However, vinculin is indispensable for the paracellular barrier function for ions. In addition, TJs stochastically showed dynamically distorted patterns in vinculin KO cell sheets. These KO phenotypes were rescued by transfecting full-length vinculin and by relaxing the actomyosin tension with blebbistatin, a myosin II ATPase activity inhibitor. Our findings indicate that vinculin resists mechanical fluctuations to maintain the TJ paracellular barrier function for ions in epithelial cell sheets.


Assuntos
Células Epiteliais/citologia , Vinculina/genética , Vinculina/metabolismo , Actomiosina/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Íons/metabolismo , Processos Estocásticos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
17.
Tissue Eng Part A ; 25(5-6): 390-398, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569829

RESUMO

IMPACT STATEMENT: Complex and functional artificial tissues consisting of multiple types of cells are generally required. However, few reliable methods to control the cellular distribution have been developed. Our present study has revealed how the core-shell type distribution is formed in NIH3T3/MIN6 spheroids. We demonstrated that focal adhesion kinase signal was the key for the cell localization in the spheroids. Moreover, we succeeded in regulating their distribution based on the mechanism revealed in the present study. These novel findings will provide a new approach for constructing artificial tissues with proper cell arrangement, which would be suitable for tissue engineering.


Assuntos
Movimento Celular , Esferoides Celulares/citologia , Animais , Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Hep G2 , Humanos , Integrinas/metabolismo , Camundongos , Receptores de Colágeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
18.
J Control Release ; 270: 177-183, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29225184

RESUMO

Immune cell-based therapy is a promising approach for cancer immunotherapy. Macrophages can be used for this purpose if their tumoricidal activity and viability are properly controlled. In the present study, we aimed to enhance these properties of macrophages by constructing uniformly sized multicellular spheroids. Mouse macrophage-like J774.1 cells were selected as model macrophages, and poly(N-isopropylacrylamide)-coated polydimethylsiloxane-based microwell plates with an approximate diameter of 750µm were used to prepare J774.1 spheroids. J774.1 spheroids were successfully generated, and the viability of cells in the spheroids was over 95%. J774.1 spheroids showed higher mRNA expression of induced nitric oxide synthase, a marker of M1-type activated macrophages, than monolayered J774.1 cells. The production of reactive oxygen species was also high in J774.1 spheroids, suggesting the existence of hypoxic regions in the spheroids. J774.1 spheroids released more tumor necrosis factor-α than monolayered cells upon stimulation with lipopolysaccharide. Moreover, J774.1 spheroids in the upper compartment of the Transwell system more efficiently inhibited the proliferation of mouse adenocarcinoma colon 26 cells in its lower compartment than monolayered J774.1 cells did. These results indicate that spheroid formation can be used to increase the tumoricidal activity of macrophages for use in cell-based cancer immunotherapy.


Assuntos
Macrófagos/fisiologia , Esferoides Celulares/fisiologia , Animais , Linhagem Celular , Polaridade Celular , Humanos , Camundongos , Neoplasias/terapia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Adv Mater ; 29(43)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28949425

RESUMO

The 20th century's robotic systems have been made from stiff materials, and much of the developments have pursued ever more accurate and dynamic robots, which thrive in industrial automation, and will probably continue to do so for decades to come. However, the 21st century's robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfill the role of robotic link and actuator, where prime focus is on design and fabrication of robotic hardware instead of software control. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics, and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators. This article reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies, and on the other hand by a market pull from applications. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication, and applications.

20.
Biotechnol J ; 12(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28439989

RESUMO

Previous studies demonstrated that multicellular spheroids developed using polydimethylsiloxane-based microwells exhibited superior functions, such as insulin secretion from pancreatic cells, over suspended cells. To successfully apply these spheroids, the effect of spheroid size on cellular functions must be determined. In this study, using murine adenocarcinoma colon26 cells, the authors examined whether such spheroids were useful for developing tumor-bearing animal models, which requires the efficient and stable engraftment of cancer cells at implanted sites and/or metastatic sites. The authors prepared microwells with widths of 360, 450, 560, and 770 µm through a micromolding technique, and obtained colon26 spheroids with average diameters of 169, 240, 272, and 341 µm, respectively. Small and medium spheroids were subsequently used. mRNA levels of integrin ß1, CD44, and fibronectin, molecules involved in cell adhesion, increased with increasing colon26 spheroid size. Approximately 1.5 × 104 colon26 cells in suspension or in spheroids were intravenously inoculated into BALB/c mice. At 21 days after inoculation, the lung weight of both colon26 spheroid groups, especially the group injected with small spheroids, was significantly higher than that of mice in the suspended colon26 cell group. These results indicate that controlling cancer cell spheroid size is crucial for tumor development in tumor-bearing mouse models.


Assuntos
Adenocarcinoma/patologia , Neoplasias Pulmonares/patologia , Esferoides Celulares/patologia , Adenocarcinoma/genética , Animais , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Dimetilpolisiloxanos/farmacologia , Humanos , Neoplasias Pulmonares/genética , Camundongos , Metástase Neoplásica , Esferoides Celulares/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA