Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38819409

RESUMO

Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.


Assuntos
Plasticidade Celular , Interleucina-17 , Periodontite , Células Th17 , Células Th17/imunologia , Animais , Periodontite/imunologia , Periodontite/patologia , Plasticidade Celular/imunologia , Interleucina-17/metabolismo , Interleucina-17/imunologia , Camundongos , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Células T Auxiliares Foliculares/imunologia , Gengiva/imunologia , Gengiva/patologia , Imunoglobulina G/imunologia , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/patologia
2.
Matrix Biol ; 127: 23-37, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331051

RESUMO

BACKGROUND: The kidney contains distinct glomerular and tubulointerstitial compartments with diverse cell types and extracellular matrix components. The role of immune cells in glomerular environment is crucial for dampening inflammation and maintaining homeostasis. Macrophages are innate immune cells that are influenced by their tissue microenvironment. However, the multifunctional role of kidney macrophages remains unclear. METHODS: Flow and imaging cytometry were used to determine the relative expression of CD81 and CX3CR1 (C-X3-C motif chemokine receptor 1) in kidney macrophages. Monocyte replenishment was assessed in Cx3cr1CreER X R26-yfp-reporter and shielded chimeric mice. Bulk RNA-sequencing and mass spectrometry-based proteomics were performed on isolated kidney macrophages from wild type and Col4a5-/- (Alport) mice. RNAscope was used to visualize transcripts and macrophage purity in bulk RNA assessed by CIBERSORTx analyses. RESULTS: In wild type mice we identified three distinct kidney macrophage subsets using CD81 and CX3CR1 and these subsets showed dependence on monocyte replenishment. In addition to their immune function, bulk RNA-sequencing of macrophages showed enrichment of biological processes associated with extracellular matrix. Proteomics identified collagen IV and laminins in kidney macrophages from wild type mice whilst other extracellular matrix proteins including cathepsins, ANXA2 and LAMP2 were enriched in Col4a5-/- (Alport) mice. A subset of kidney macrophages co-expressed matrix and macrophage transcripts. CONCLUSIONS: We identified CD81 and CX3CR1 positive kidney macrophage subsets with distinct dependence for monocyte replenishment. Multiomic analysis demonstrated that these cells have diverse functions that underscore the importance of macrophages in kidney health and disease.


Assuntos
Nefropatias , Macrófagos , Camundongos , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Macrófagos/metabolismo , Rim/metabolismo , Inflamação/metabolismo , Nefropatias/metabolismo , RNA/metabolismo
3.
Br J Haematol ; 202(3): 589-598, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211883

RESUMO

In high-risk myeloid malignancy, relapse is reduced using cord blood transplant (CBT) but remains the principal cause of treatment failure. We previously described T-cell expansion in CBT recipients receiving granulocyte transfusions. We now report the safety and tolerability of such transfusions, T-cell expansion data, immunophenotype, cytokine profiles and clinical response in children with post-transplant relapsed acute leukaemia who received T-replete, HLA-mismatched CBT and pooled granulocytes within a phase I/II trial (ClinicalTrials.Gov NCT05425043). All patients received the transfusion schedule without significant clinical toxicity. Nine of ten patients treated had detectable measurable residual disease (MRD) pre-transplant. Nine patients achieved haematological remission, and eight became MRD negative. There were five deaths: transplant complications (n = 2), disease (n = 3), including two late relapses. Five patients are alive and in remission with 12.7 months median follow up. Significant T-cell expansion occurred in nine patients with a greater median lymphocyte count than a historical cohort between days 7-13 (median 1.73 × 109 /L vs. 0.1 × 109 /L; p < 0.0001). Expanded T-cells were predominantly CD8+ and effector memory or TEMRA phenotype. They exhibited markers of activation and cytotoxicity with interferon-gamma production. All patients developed grade 1-3 cytokine release syndrome (CRS) with elevated serum IL-6 and interferon-gamma.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Leucemia Mieloide Aguda , Criança , Humanos , Linfócitos T CD8-Positivos/patologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical/efeitos adversos , Síndrome da Liberação de Citocina/etiologia , Granulócitos/patologia , Interferon gama , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Recidiva Local de Neoplasia/etiologia , Indução de Remissão
4.
Immunity ; 56(5): 1064-1081.e10, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36948193

RESUMO

The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.


Assuntos
Filariose , Filarioidea , Infecções por Nematoides , Camundongos , Animais , Filarioidea/fisiologia , Células Th2 , Monócitos , Cavidade Pleural , Camundongos Endogâmicos C57BL , Macrófagos/fisiologia , Diferenciação Celular , Camundongos Endogâmicos BALB C
5.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36922030

RESUMO

BACKGROUND: COVID-19 is associated with a dysregulated immune response but it is unclear how immune dysfunction contributes to the chronic morbidity persisting in many COVID-19 patients during convalescence (long COVID). METHODS: We assessed phenotypical and functional changes of monocytes in COVID-19 patients during hospitalisation and up to 9 months of convalescence following COVID-19, respiratory syncytial virus or influenza A. Patients with progressive fibrosing interstitial lung disease were included as a positive control for severe, ongoing lung injury. RESULTS: Monocyte alterations in acute COVID-19 patients included aberrant expression of leukocyte migration molecules, continuing into convalescence (n=142) and corresponding with specific symptoms of long COVID. Long COVID patients with unresolved lung injury, indicated by sustained shortness of breath and abnormal chest radiology, were defined by high monocyte expression of C-X-C motif chemokine receptor 6 (CXCR6) (p<0.0001) and adhesion molecule P-selectin glycoprotein ligand 1 (p<0.01), alongside preferential migration of monocytes towards the CXCR6 ligand C-X-C motif chemokine ligand 16 (CXCL16) (p<0.05), which is abundantly expressed in the lung. Monocyte CXCR6 and lung CXCL16 were heightened in patients with progressive fibrosing interstitial lung disease (p<0.001), confirming a role for the CXCR6-CXCL16 axis in ongoing lung injury. Conversely, monocytes from long COVID patients with ongoing fatigue exhibited a sustained reduction of the prostaglandin-generating enzyme cyclooxygenase 2 (p<0.01) and CXCR2 expression (p<0.05). These monocyte changes were not present in respiratory syncytial virus or influenza A convalescence. CONCLUSIONS: Our data define unique monocyte signatures that define subgroups of long COVID patients, indicating a key role for monocyte migration in COVID-19 pathophysiology. Targeting these pathways may provide novel therapeutic opportunities in COVID-19 patients with persistent morbidity.


Assuntos
COVID-19 , Influenza Humana , Lesão Pulmonar , Humanos , Monócitos/metabolismo , Quimiocinas CXC/metabolismo , Receptores Virais/metabolismo , Receptores CXCR6 , Receptores de Quimiocinas/metabolismo , Síndrome de COVID-19 Pós-Aguda , Ligantes , Convalescença , Receptores Depuradores/metabolismo , Quimiocina CXCL16 , Gravidade do Paciente
6.
Discov Immunol ; 2(1): kyad005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567065

RESUMO

The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.

7.
Int J Biochem Cell Biol ; 145: 106194, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276370

RESUMO

Unlike other non-lymphoid tissues monocytes comprise a large proportion of mononuclear phagocytes present within the gingiva. Their functions and fate remain poorly understood. The oral mucosa faces challenges common to all barrier surfaces, including constant exposure to antigens and the resident commensal bacteria, but also experiences ongoing mechanical damage from mastication. Gingiva monocytes may therefore possess both myeloid functions observed at other barrier sites, such as hypo-responsiveness to bacterial stimulation, and distinctive functions tailored by their unique environment. In this review, we discuss the establishment and function of monocytes and macrophages at several mucosal tissues, and posit potential functions of monocytes within the gingiva tissue.


Assuntos
Gengiva , Monócitos , Bactérias , Gengiva/microbiologia , Macrófagos
8.
J Invest Dermatol ; 142(9): 2446-2454.e3, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35300973

RESUMO

The cytokine TGFß1 induces epidermal Langerhans cell (LC) differentiation from human precursors, an effect mediated through BMPR1a/ALK3 signaling, as revealed from ectopic expression and receptor inhibition studies. Whether TGFß1‒BMPR1a signaling is required for LC differentiation in vivo remained incompletely understood. We found that TGFß1-deficient mice show defective perinatal expansion and differentiation of LCs. LCs can be identified within the normal healthy human epidermis by anti-BMPR1a immunohistology staining. Deletion of BMPR1a in all (vav+) hematopoietic cells revealed that BMPR1a is required for the efficient TGFß1-dependent generation of CD207+ LC-like cells from CD11c+ intermediates in vitro. Similarly, BMPR1a was required for the optimal induction of CD207 by preformed major histocompatibility complex II‒positive epidermal resident LC precursors in the steady state. BMPR1a expression is strongly upregulated in epidermal cells in psoriatic lesions, and BMPR1aΔCD11c mice showed a defect in the resolution phase of allergic and psoriatic skin inflammation. Moreover, whereas LCs from these mice expressed CD207, BMPR1a counteracted LC activation and migration from skin explant cultures. Therefore, TGFß1‒BMPR1a signaling seems to be required for the efficient induction of CD207 during LC differentiation in the steady state, and bone marrow‒derived lesional CD11c+ cells may limit established skin inflammation through enhanced BMPR1a signaling.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Dermatite , Células de Langerhans , Animais , Antígenos CD/metabolismo , Antígenos de Superfície , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Antígenos CD11 , Antígeno CD11c/metabolismo , Diferenciação Celular , Dermatite/metabolismo , Epiderme/metabolismo , Inflamação/metabolismo , Células de Langerhans/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Camundongos
9.
Med ; 2(6): 720-735.e4, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33821250

RESUMO

BACKGROUND: Emerging studies indicate that some coronavirus disease 2019 (COVID-19) patients suffer from persistent symptoms, including breathlessness and chronic fatigue; however, the long-term immune response in these patients presently remains ill-defined. METHODS: Here, we describe the phenotypic and functional characteristics of B and T cells in hospitalized COVID-19 patients during acute disease and at 3-6 months of convalescence. FINDINGS: We report that the alterations in B cell subsets observed in acute COVID-19 patients were largely recovered in convalescent patients. In contrast, T cells from convalescent patients displayed continued alterations with persistence of a cytotoxic program evident in CD8+ T cells as well as elevated production of type 1 cytokines and interleukin-17 (IL-17). Interestingly, B cells from patients with acute COVID-19 displayed an IL-6/IL-10 cytokine imbalance in response to Toll-like receptor activation, skewed toward a pro-inflammatory phenotype. Whereas the frequency of IL-6+ B cells was restored in convalescent patients irrespective of clinical outcome, the recovery of IL-10+ B cells was associated with the resolution of lung pathology. CONCLUSIONS: Our data detail lymphocyte alterations in previously hospitalized COVID-19 patients up to 6 months following hospital discharge and identify 3 subgroups of convalescent patients based on distinct lymphocyte phenotypes, with 1 subgroup associated with poorer clinical outcome. We propose that alterations in B and T cell function following hospitalization with COVID-19 could affect longer-term immunity and contribute to some persistent symptoms observed in convalescent COVID-19 patients. FUNDING: Provided by UKRI, Lister Institute of Preventative Medicine, the Wellcome Trust, The Kennedy Trust for Rheumatology Research, and 3M Global Giving.


Assuntos
COVID-19 , Linfócitos T CD8-Positivos , Citocinas , Humanos , Interleucina-10 , Interleucina-6 , SARS-CoV-2
10.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33635312

RESUMO

Hematopoietic stem cells reside in the bone marrow, where they generate the effector cells that drive immune responses. However, in response to inflammation, some hematopoietic stem and progenitor cells (HSPCs) are recruited to tissue sites and undergo extramedullary hematopoiesis. Contrasting with this paradigm, here we show residence and differentiation of HSPCs in healthy gingiva, a key oral barrier in the absence of overt inflammation. We initially defined a population of gingiva monocytes that could be locally maintained; we subsequently identified not only monocyte progenitors but also diverse HSPCs within the gingiva that could give rise to multiple myeloid lineages. Gingiva HSPCs possessed similar differentiation potentials, reconstitution capabilities, and heterogeneity to bone marrow HSPCs. However, gingival HSPCs responded differently to inflammatory insults, responding to oral but not systemic inflammation. Combined, we highlight a novel pathway of myeloid cell development at a healthy barrier, defining a gingiva-specific HSPC network that supports generation of a proportion of the innate immune cells that police this barrier.


Assuntos
Gengiva/citologia , Gengiva/imunologia , Células Progenitoras Mieloides/citologia , Células Progenitoras Mieloides/imunologia , Animais , Medula Óssea/metabolismo , Feminino , Hematopoese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Bucal/citologia , Mucosa Bucal/imunologia , RNA-Seq/métodos , Análise de Célula Única/métodos
11.
Front Cell Infect Microbiol ; 10: 558644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425774

RESUMO

The role of the human microbiome in health and disease is becoming increasingly apparent. Emerging evidence suggests that the microbiome is affected by solid organ transplantation. Kidney transplantation is the gold standard treatment for End-Stage Renal Disease (ESRD), the advanced stage of Chronic Kidney Disease (CKD). The question of how ESRD and transplantation affect the microbiome and vice versa includes how the microbiome is affected by increased concentrations of toxins such as urea and creatinine (which are elevated in ESRD), whether restoration of renal function following transplantation alters the composition of the microbiome, and the impact of lifelong administration of immunosuppressive drugs on the microbiome. Changes in microbiome composition and activity have been reported in ESRD and in therapeutic immunosuppression, but the effect on the outcome of transplantation is not well-understood. Here, we consider the current evidence that changes in kidney function and immunosuppression following transplantation influence the oral, gut, and urinary microbiomes in kidney transplant patients. The potential for changes in these microbiomes to lead to disease, systemic inflammation, or rejection of the organ itself is discussed, along with the possibility that restoration of kidney function might re-establish orthobiosis.


Assuntos
Falência Renal Crônica , Transplante de Rim , Microbiota , Insuficiência Renal Crônica , Humanos , Terapia de Imunossupressão , Falência Renal Crônica/cirurgia
12.
Int J Stroke ; 15(2): 175-187, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30794103

RESUMO

BACKGROUND: Stroke is a major cause of disability and mortality. Poorer outcome after stroke is associated with concomitant inflammatory and infectious disease. Periodontitis is a chronic inflammatory disease of the dental supporting structures and is a prominent risk factor for many systemic disorders, including cardiovascular disease and stroke. While epidemiological studies suggest that periodontitis increases the likelihood of stroke, its impact on stroke severity is poorly understood. Here, we sought to determine the contribution of periodontitis to acute stroke pathology. METHODS: We characterized a murine ligature model of periodontitis for inflammatory responses that could potentially impact stroke outcome. We applied this model and then subjected mice to either transient or permanent middle cerebral artery occlusion. We also enhanced the periodontitis model with repeated intravenous administration of a periodontal-specific lipopolysaccharide to better mimic the clinical condition. RESULTS: Ligature-induced periodontitis caused bone loss, bacterial growth, and increased local inflammatory cell trafficking. Systemically, periodontitis increased circulating levels of pro-inflammatory cytokines, and primed bone marrow monocytes to produce elevated tumour necrosis factor-alpha (TNFα). Despite these changes, periodontitis alone or in tandem with repeated lipopolysaccharide challenge did not alter infarct volume, blood-brain barrier breakdown, or systemic inflammation after experimental stroke. CONCLUSIONS: Our data show that despite elevated systemic inflammation in periodontitis, oral inflammatory disease does not impact acute stroke pathology in terms of severity, determined primarily by infarct volume. This indicates that, at least in this experimental paradigm, periodontitis alone does not alter acute outcome after cerebral ischemia.


Assuntos
Inflamação/etiologia , Periodontite/complicações , Acidente Vascular Cerebral/complicações , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/microbiologia , Masculino , Camundongos , Monócitos/metabolismo , Periodontite/metabolismo , Periodontite/microbiologia , Índice de Gravidade de Doença , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(42): 10738-10743, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30279177

RESUMO

γδ T cells are enriched at barrier sites such as the gut, skin, and lung, where their roles in maintaining barrier integrity are well established. However, how these cells contribute to homeostasis at the gingiva, a key oral barrier and site of the common chronic inflammatory disease periodontitis, has not been explored. Here we demonstrate that the gingiva is policed by γδ T cells with a T cell receptor (TCR) repertoire that diversifies during development. Gingival γδ T cells accumulated rapidly after birth in response to barrier damage, and strikingly, their absence resulted in enhanced pathology in murine models of the oral inflammatory disease periodontitis. Alterations in bacterial communities could not account for the increased disease severity seen in γδ T cell-deficient mice. Instead, gingival γδ T cells produced the wound healing associated cytokine amphiregulin, administration of which rescued the elevated oral pathology of tcrδ-/- mice. Collectively, our results identify γδ T cells as critical constituents of the immuno-surveillance network that safeguard gingival tissue homeostasis.


Assuntos
Anfirregulina/metabolismo , Homeostase , Boca/imunologia , Periodontite/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia , Subpopulações de Linfócitos T/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Boca/metabolismo , Periodontite/metabolismo , Periodontite/patologia , Subpopulações de Linfócitos T/metabolismo
14.
J Exp Med ; 215(6): 1507-1518, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29789388

RESUMO

A defining feature of resident gut macrophages is their high replenishment rate from blood monocytes attributed to tonic commensal stimulation of this site. In contrast, almost all other tissues contain locally maintained macrophage populations, which coexist with monocyte-replenished cells at homeostasis. In this study, we identified three transcriptionally distinct mouse gut macrophage subsets that segregate based on expression of Tim-4 and CD4. Challenging current understanding, Tim-4+CD4+ gut macrophages were found to be locally maintained, while Tim-4-CD4+ macrophages had a slow turnover from blood monocytes; indeed, Tim-4-CD4- macrophages were the only subset with the high monocyte-replenishment rate currently attributed to gut macrophages. Moreover, all macrophage subpopulations required live microbiota to sustain their numbers, not only those derived from blood monocytes. These findings oppose the prevailing paradigm that all macrophages in the adult mouse gut rapidly turn over from monocytes in a microbiome-dependent manner; instead, these findings supplant it with a model of ontogenetic diversity where locally maintained subsets coexist with rapidly replaced monocyte-derived populations.


Assuntos
Antígenos CD4/metabolismo , Intestinos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Animais Recém-Nascidos , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Microbiota , Monócitos/metabolismo , Fenótipo , Receptores CCR2/metabolismo , Transcrição Gênica
15.
Pflugers Arch ; 469(3-4): 527-539, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28283748

RESUMO

Monocyte-derived mononuclear phagocytes, particularly macrophages, are crucial to maintain gastrointestinal homeostasis in the steady state but are also important for protection against certain pathogens. However, when uncontrolled, they can promote immunopathology. Broadly two subsets of macrophages can be considered to perform the vast array of functions to complete these complex tasks: resident macrophages that dominate in the healthy gut and inflammation-elicited (inflammatory) macrophages that derive from circulating monocytes infiltrating inflamed tissue. Here, we discuss the features of resident and inflammatory intestinal macrophages, complexities in identifying and defining these populations and the mechanisms involved in their differentiation. In particular, focus will be placed on describing their unique ontogeny as well as local gastrointestinal signals that instruct specialisation of resident macrophages in healthy tissue. We then explore the very different roles of inflammatory macrophages and describe new data suggesting that they may be educated not only by the gut microenvironment but also by signals they receive during development in the bone marrow. Given the high degree of plasticity of gut macrophages and their multifaceted roles in both healthy and inflamed tissue, understanding the mechanisms controlling their differentiation could inform development of improved therapies for inflammatory diseases such as inflammatory bowel disease (IBD).


Assuntos
Homeostase/fisiologia , Inflamação/patologia , Intestinos/patologia , Intestinos/fisiologia , Macrófagos/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Doenças Inflamatórias Intestinais/patologia
16.
Immunity ; 43(2): 251-63, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26275994

RESUMO

Regulatory T (Treg) cells are essential for maintenance of immune homeostasis. Here we found that hydrogen sulfide (H2S) was required for Foxp3(+) Treg cell differentiation and function and that H2S deficiency led to systemic autoimmune disease. H2S maintained expression of methylcytosine dioxygenases Tet1 and Tet2 by sulfhydrating nuclear transcription factor Y subunit beta (NFYB) to facilitate its binding to Tet1 and Tet2 promoters. Transforming growth factor-ß (TGF-ß)-activated Smad3 and interleukin-2 (IL-2)-activated Stat5 facilitated Tet1 and Tet2 binding to Foxp3. Tet1 and Tet2 catalyzed conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in Foxp3 to establish a Treg-cell-specific hypomethylation pattern and stable Foxp3 expression. Consequently, Tet1 and Tet2 deletion led to Foxp3 hypermethylation, impaired Treg cell differentiation and function, and autoimmune disease. Thus, H2S promotes Tet1 and Tet2 expression, which are recruited to Foxp3 by TGF-ß and IL-2 signaling to maintain Foxp3 demethylation and Treg-cell-associated immune homeostasis.


Assuntos
Colite/imunologia , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Fator de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Colite/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Fatores de Transcrição Forkhead/genética , Homeostase/genética , Homeostase/imunologia , Humanos , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Fator de Transcrição STAT5/metabolismo , Proteína Smad3/metabolismo , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta/imunologia
17.
Immunity ; 42(6): 1130-42, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26070484

RESUMO

Tissue-infiltrating Ly6C(hi) monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DCs) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals after tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function.


Assuntos
Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Antígenos Ly/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células da Medula Óssea/parasitologia , Diferenciação Celular , Células Cultivadas , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Mucosa Intestinal/parasitologia , Células Matadoras Naturais/parasitologia , Leucócitos Mononucleares/parasitologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Especificidade de Órgãos/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
18.
Elife ; 32014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25546306

RESUMO

Clinically effective antigen-based immunotherapy must silence antigen-experienced effector T cells (Teff) driving ongoing immune pathology. Using CD4(+) autoimmune Teff cells, we demonstrate that peptide immunotherapy (PIT) is strictly dependent upon sustained T cell expression of the co-inhibitory molecule PD-1. We found high levels of 5-hydroxymethylcytosine (5hmC) at the PD-1 (Pdcd1) promoter of non-tolerant T cells. 5hmC was lost in response to PIT, with DNA hypomethylation of the promoter. We identified dynamic changes in expression of the genes encoding the Ten-Eleven-Translocation (TET) proteins that are associated with the oxidative conversion 5-methylcytosine and 5hmC, during cytosine demethylation. We describe a model whereby promoter demethylation requires the co-incident expression of permissive histone modifications at the Pdcd1 promoter together with TET availability. This combination was only seen in tolerant Teff cells following PIT, but not in Teff that transiently express PD-1. Epigenetic changes at the Pdcd1 locus therefore determine the tolerizing potential of TCR-ligation.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Epigênese Genética , Imunoterapia , Peptídeos/administração & dosagem , Receptor de Morte Celular Programada 1/genética , Regiões Promotoras Genéticas , 5-Metilcitosina/análogos & derivados , Animais , Linfócitos T CD4-Positivos/imunologia , Meios de Cultura , Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA , Camundongos , Camundongos Endogâmicos C57BL
19.
Arthritis Rheumatol ; 66(8): 2234-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24756936

RESUMO

OBJECTIVE: Allogeneic mesenchymal stem cells (MSCs) exhibit therapeutic effects in human autoimmune diseases such as systemic lupus erythematosus (SLE), but the underlying mechanisms remain largely unknown. The aim of this study was to investigate how allogeneic MSCs mediate immunosuppression in lupus patients. METHODS: The effects of allogeneic umbilical cord-derived MSCs (UC-MSCs) on inhibition of T cell proliferation were determined. MSC functional molecules were stimulated with peripheral blood mononuclear cells from healthy controls and SLE patients and examined by real-time polymerase chain reaction. CD4+ and CD8+ T cells were purified using microbeads to stimulate MSCs in order to determine cytokine expression by MSCs and to further determine which cell subset(s) or which molecule(s) is involved in inhibition of MSC-mediated T cell proliferation. The related signaling pathways were assessed. We determined levels of serum cytokines in lupus patients before and after UC-MSC transplantation. RESULTS: Allogeneic UC-MSCs suppressed T cell proliferation in lupus patients by secreting large amounts of indoleamine 2,3-dioxygenase (IDO). We further found that interferon-γ (IFNγ), which is produced predominantly by lupus CD8+ T cells, is the key factor that enhances IDO activity in allogeneic MSCs and that it is associated with IFNGR1/JAK-2/STAT signaling pathways. Intriguingly, bone marrow-derived MSCs from patients with active lupus demonstrated defective IDO production in response to IFNγ and allogeneic CD8+ T cell stimulation. After allogeneic UC-MSC transplantation, serum IDO activity increased in lupus patients. CONCLUSION: We found a previously unrecognized CD8+ T cell/IFNγ/IDO axis that mediates the therapeutic effects of allogeneic MSCs in lupus patients.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Interferon gama/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/cirurgia , Transplante de Células-Tronco Mesenquimais , Humanos
20.
J Biol Chem ; 288(44): 32074-92, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24056369

RESUMO

Three homologues of TGF-ß exist in mammals as follows: TGF-ß1, TGF-ß2, and TGF-ß3. All three proteins share high homology in their amino acid sequence, yet each TGF-ß isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-ß proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-ß knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-ß1 ligand with a sequence from TGF-ß3 using targeted recombination to create chimeric TGF-ß1/3 knock-in mice (TGF-ß1(Lß3/Lß3)). In the TGF-ß1(Lß3/Lß3) mouse, localization and activation still occur through the TGF-ß1 latent associated peptide, but cell signaling is triggered through the TGF-ß3 ligand that binds to TGF-ß receptors. Unlike TGF-ß1(-/-) mice, the TGF-ß1(Lß3/Lß3) mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-ß3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-ß1 deficiency. However, the TGF-ß1(Lß3/Lß3) mice have a shortened life span and display tooth and bone defects, indicating that the TGF-ß homologues are not completely interchangeable. Remarkably, the TGF-ß1(Lß3/Lß3) mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-ß isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-ß pathway in human disease.


Assuntos
Glucose/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Animais , Células COS , Chlorocebus aethiops , Técnicas de Introdução de Genes , Glucose/genética , Células Hep G2 , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neovascularização Fisiológica/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Suínos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA