Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(1): e54689, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36408842

RESUMO

Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Esfingolipídeos , Animais , Humanos , Esfingolipídeos/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Membrana/metabolismo , Homeostase , Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
2.
Neurobiol Dis ; 144: 105025, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745521

RESUMO

Amyotrophic lateral sclerosis is a disease characterized by progressive paralysis and death. Most ALS-cases are sporadic (sALS) and patient heterogeneity poses challenges for effective therapies. Applying metabolite profiling on 77-sALS patient-derived-fibroblasts and 43-controls, we found ~25% of sALS cases (termed sALS-1) are characterized by transsulfuration pathway upregulation, where methionine-derived-homocysteine is channeled into cysteine for glutathione synthesis. sALS-1 fibroblasts selectively exhibited a growth defect under oxidative conditions, fully-rescued by N-acetylcysteine (NAC). [U13C]-glucose tracing showed transsulfuration pathway activation with accelerated glucose flux into the Krebs cycle. We established a four-metabolite support vector machine model predicting sALS-1 metabotype with 97.5% accuracy. Both sALS-1 metabotype and growth phenotype were validated in an independent cohort of sALS cases. Importantly, plasma metabolite profiling identified a system-wide cysteine metabolism perturbation as a hallmark of sALS-1. Findings reveal that sALS patients can be stratified into distinct metabotypes with differential sensitivity to metabolic stress, providing novel insights for personalized therapy.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cisteína/metabolismo , Fibroblastos/metabolismo , Glucose/metabolismo , Glutationa/metabolismo , Metaboloma , Idoso , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Metabolômica , Pessoa de Meia-Idade , Serina/metabolismo , Pele/citologia
3.
Nature ; 562(7727): 423-428, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305738

RESUMO

Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function1-4. However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer-an aggressive malignancy that is refractory to standard treatments and current immunotherapies5-8-induces endoplasmic reticulum stress and activates the IRE1α-XBP1 arm of the unfolded protein response9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α-XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α-XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α-XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.


Assuntos
Endorribonucleases/metabolismo , Mitocôndrias/metabolismo , Neoplasias Ovarianas/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Proteína 1 de Ligação a X-Box/metabolismo , Sistemas de Transporte de Aminoácidos Básicos , Animais , Ascite/metabolismo , Respiração Celular , Progressão da Doença , Estresse do Retículo Endoplasmático , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Glutamina/metabolismo , Glicosilação , Humanos , Interferon gama/biossíntese , Interferon gama/genética , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Ovarianas/patologia , Transdução de Sinais , Taxa de Sobrevida , Linfócitos T/metabolismo , Evasão Tumoral/imunologia , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/biossíntese , Proteína 1 de Ligação a X-Box/deficiência
4.
Stroke ; 49(5): 1223-1231, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29643256

RESUMO

BACKGROUND AND PURPOSE: Ischemic brain injury is characterized by 2 temporally distinct but interrelated phases: ischemia (primary energy failure) and reperfusion (secondary energy failure). Loss of cerebral blood flow leads to decreased oxygen levels and energy crisis in the ischemic area, initiating a sequence of pathophysiological events that after reoxygenation lead to ischemia/reperfusion (I/R) brain damage. Mitochondrial impairment and oxidative stress are known to be early events in I/R injury. However, the biochemical mechanisms of mitochondria damage in I/R are not completely understood. METHODS: We used a mouse model of transient focal cerebral ischemia to investigate acute I/R-induced changes of mitochondrial function, focusing on mechanisms of primary and secondary energy failure. RESULTS: Ischemia induced a reversible loss of flavin mononucleotide from mitochondrial complex I leading to a transient decrease in its enzymatic activity, which is rapidly reversed on reoxygenation. Reestablishing blood flow led to a reversible oxidative modification of mitochondrial complex I thiol residues and inhibition of the enzyme. Administration of glutathione-ethyl ester at the onset of reperfusion prevented the decline of complex I activity and was associated with smaller infarct size and improved neurological outcome, suggesting that decreased oxidation of complex I thiols during I/R-induced oxidative stress may contribute to the neuroprotective effect of glutathione ester. CONCLUSIONS: Our results unveil a key role of mitochondrial complex I in the development of I/R brain injury and provide the mechanistic basis for the well-established mitochondrial dysfunction caused by I/R. Targeting the functional integrity of complex I in the early phase of reperfusion may provide a novel therapeutic strategy to prevent tissue injury after stroke.


Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mononucleotídeo de Flavina/metabolismo , Glutationa/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Circulação Cerebrovascular , Citrato (si)-Sintase/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético , Glutationa/análogos & derivados , Glutationa/farmacologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Compostos de Sulfidrila/metabolismo
5.
J Cell Sci ; 130(21): 3713-3727, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864766

RESUMO

cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca2+ signaling.


Assuntos
Adenilil Ciclases/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Adenilil Ciclases/genética , Animais , Fracionamento Celular , Linhagem Celular , Retículo Endoplasmático/ultraestrutura , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Consumo de Oxigênio
6.
J Bioenerg Biomembr ; 49(1): 3-11, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26971498

RESUMO

We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate's effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations.


Assuntos
Cátions Bivalentes/farmacologia , Ácido Cítrico/farmacologia , Ácido Edético/farmacologia , Cloreto de Magnésio/farmacologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Transporte Biológico , Encéfalo/ultraestrutura , Humanos , Peróxido de Hidrogênio/metabolismo , Canais Iônicos/metabolismo , Melanoma/patologia , Melanoma/ultraestrutura , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo
7.
Nat Med ; 22(2): 163-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26752519

RESUMO

Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.


Assuntos
Bronquite/genética , Quelantes de Ferro/farmacologia , Proteínas de Ligação ao Ferro/genética , Ferro/metabolismo , Pulmão/metabolismo , Mitocôndrias/metabolismo , Nicotiana , Doença Pulmonar Obstrutiva Crônica/genética , Enfisema Pulmonar/genética , Fumaça/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Remodelação das Vias Aéreas , Animais , Bronquite/etiologia , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Ferro da Dieta , Pulmão/efeitos dos fármacos , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Depuração Mucociliar/genética , Pneumonia/etiologia , Pneumonia/genética , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/etiologia , Reação em Cadeia da Polimerase em Tempo Real , Fumar/efeitos adversos , Frataxina
8.
Biochim Biophys Acta ; 1842(12 Pt B): 2555-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24907564

RESUMO

The soluble adenylyl cyclase (sAC) catalyzes the conversion of ATP into cyclic AMP (cAMP). Recent studies have shed new light on the role of sAC localized in mitochondria and its product cAMP, which drives mitochondrial protein phosphorylation and regulation of the oxidative phosphorylation system and other metabolic enzymes, presumably through the activation of intra-mitochondrial PKA. In this review article, we summarize recent findings on mitochondrial sAC activation by bicarbonate (HCO(3)(-)) and calcium (Ca²âº) and the effects on mitochondrial metabolism. We also discuss putative mechanisms whereby sAC-mediated mitochondrial protein phosphorylation regulates mitochondrial metabolism. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.


Assuntos
Adenilil Ciclases/metabolismo , Mitocôndrias/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Humanos , Fosforilação Oxidativa
9.
FASEB J ; 28(4): 1682-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24391134

RESUMO

Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.


Assuntos
Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico , Di-Hidrolipoamida Desidrogenase/metabolismo , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Acil Coenzima A/metabolismo , Animais , Columbidae , Di-Hidrolipoamida Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipóxia/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/fisiologia , Translocases Mitocondriais de ADP e ATP/metabolismo , Modelos Biológicos , Nitrilas/farmacologia , Oxirredução , Fosforilação Oxidativa , Especificidade por Substrato , Succinato-CoA Ligases/metabolismo , Desacopladores/farmacologia
10.
PLoS One ; 7(6): e39839, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768139

RESUMO

Mitochondria from the embryos of brine shrimp (Artemia franciscana) do not undergo Ca(2+)-induced permeability transition in the presence of a profound Ca(2+) uptake capacity. Furthermore, this crustacean is the only organism known to exhibit bongkrekate-insensitive mitochondrial adenine nucleotide exchange, prompting the conjecture that refractoriness to bongkrekate and absence of Ca(2+)-induced permeability transition are somehow related phenomena. Here we report that mitochondria isolated from two other crustaceans, brown shrimp (Crangon crangon) and common prawn (Palaemon serratus) exhibited bongkrekate-sensitive mitochondrial adenine nucleotide transport, but lacked a Ca(2+)-induced permeability transition. Ca(2+) uptake capacity was robust in the absence of adenine nucleotides in both crustaceans, unaffected by either bongkrekate or cyclosporin A. Transmission electron microscopy images of Ca(2+)-loaded mitochondria showed needle-like formations of electron-dense material strikingly similar to those observed in mitochondria from the hepatopancreas of blue crab (Callinectes sapidus) and the embryos of Artemia franciscana. Alignment analysis of the partial coding sequences of the adenine nucleotide translocase (ANT) expressed in Crangon crangon and Palaemon serratus versus the complete sequence expressed in Artemia franciscana reappraised the possibility of the 208-214 amino acid region for conferring sensitivity to bongkrekate. However, our findings suggest that the ability to undergo Ca(2+)-induced mitochondrial permeability transition and the sensitivity of adenine nucleotide translocase to bongkrekate are not necessarily related phenomena.


Assuntos
Ácido Bongcréquico/farmacologia , Cálcio/farmacologia , Crangonidae/metabolismo , Nucleotídeos/metabolismo , Palaemonidae/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Crangonidae/efeitos dos fármacos , Ligantes , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dados de Sequência Molecular , Palaemonidae/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Filogenia , Alinhamento de Sequência
11.
FEBS J ; 278(7): 1112-25, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21281446

RESUMO

Cyclophilin D was recently shown to bind to and decrease the activity of F(0)F(1)-ATP synthase in submitochondrial particles and permeabilized mitochondria [Giorgio V et al. (2009) J Biol Chem, 284, 33982-33988]. Cyclophilin D binding decreased both ATP synthesis and hydrolysis rates. In the present study, we reaffirm these findings by demonstrating that, in intact mouse liver mitochondria energized by ATP, the absence of cyclophilin D or the presence of cyclosporin A led to a decrease in the extent of uncoupler-induced depolarization. Accordingly, in substrate-energized mitochondria, an increase in F(0)F(1)-ATP synthase activity mediated by a relief of inhibition by cyclophilin D was evident in the form of slightly increased respiration rates during arsenolysis. However, the modulation of F(0)F(1)-ATP synthase by cyclophilin D did not increase the adenine nucleotide translocase (ANT)-mediated ATP efflux rate in energized mitochondria or the ATP influx rate in de-energized mitochondria. The lack of an effect of cyclophilin D on the ANT-mediated adenine nucleotide exchange rate was attributed to the ∼ 2.2-fold lower flux control coefficient of the F(0)F(1)-ATP synthase than that of ANT, as deduced from measurements of adenine nucleotide flux rates in intact mitochondria. These findings were further supported by a recent kinetic model of the mitochondrial phosphorylation system, suggesting that an ∼ 30% change in F(0)F(1)-ATP synthase activity in fully energized or fully de-energized mitochondria affects the ADP-ATP exchange rate mediated by the ANT in the range 1.38-1.7%. We conclude that, in mitochondria exhibiting intact inner membranes, the absence of cyclophilin D or the inhibition of its binding to F(0)F(1)-ATP synthase by cyclosporin A will affect only matrix adenine nucleotides levels.


Assuntos
Nucleotídeos de Adenina/metabolismo , Ciclofilinas/metabolismo , Mitocôndrias Hepáticas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Arseniatos/farmacologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Peptidil-Prolil Isomerase F , Ciclosporina/farmacologia , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/ultraestrutura , Modelos Biológicos , Consumo de Oxigênio , Prótons
12.
FEBS J ; 278(5): 822-36, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205213

RESUMO

Mitochondria isolated from embryos of the crustacean Artemia franciscana lack the Ca(2+)-induced permeability transition pore. Although the composition of the pore described in mammalian mitochondria is unknown, the impacts of several effectors of the adenine nucleotide translocase (ANT) on pore opening are firmly established. Notably, ADP, ATP and bongkrekate delay, whereas carboxyatractyloside hastens, Ca(2+)-induced pore opening. Here, we report that adenine nucleotides decreased, whereas carboxyatractyloside increased, Ca(2+) uptake capacity in mitochondria isolated from Artemia embryos. Bongkrekate had no effect on either Ca(2+) uptake or ADP-ATP exchange rate. Transmission electron microscopy imaging of Ca(2+)-loaded Artemia mitochondria showed needle-like formations of electron-dense material in the absence of adenine nucleotides, and dot-like formations in the presence of adenine nucleotides or Mg(2+). Energy-filtered transmission electron microscopy showed the material to be rich in calcium and phosphorus. Sequencing of the Artemia mRNA coding for ANT revealed that it transcribes a protein with a stretch of amino acids in the 198-225 region with 48-56% similarity to those from other species, including the deletion of three amino acids in positions 211, 212 and 219. Mitochondria isolated from the liver of Xenopus laevis, in which the ANT shows similarity to that in Artemia except for the 198-225 amino acid region, demonstrated a Ca(2+)-induced bongkrekate-sensitive permeability transition pore, allowing the suggestion that this region of ANT may contain the binding site for bongkrekate.


Assuntos
Nucleotídeos de Adenina/metabolismo , Artemia/embriologia , Artemia/enzimologia , Cálcio/metabolismo , Embrião não Mamífero/enzimologia , Embrião não Mamífero/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Nucleotídeos de Adenina/química , Sequência de Aminoácidos , Animais , Artemia/metabolismo , Artemia/ultraestrutura , Embrião não Mamífero/ultraestrutura , Microscopia Eletrônica de Transmissão , Translocases Mitocondriais de ADP e ATP/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
13.
FASEB J ; 24(7): 2405-16, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20207940

RESUMO

In pathological conditions, F(0)F(1)-ATPase hydrolyzes ATP in an attempt to maintain mitochondrial membrane potential. Using thermodynamic assumptions and computer modeling, we established that mitochondrial membrane potential can be more negative than the reversal potential of the adenine nucleotide translocase (ANT) but more positive than that of the F(0)F(1)-ATPase. Experiments on isolated mitochondria demonstrated that, when the electron transport chain is compromised, the F(0)F(1)-ATPase reverses, and the membrane potential is maintained as long as matrix substrate-level phosphorylation is functional, without a concomitant reversal of the ANT. Consistently, no cytosolic ATP consumption was observed using plasmalemmal K(ATP) channels as cytosolic ATP biosensors in cultured neurons, in which their in situ mitochondria were compromised by respiratory chain inhibitors. This finding was further corroborated by quantitative measurements of mitochondrial membrane potential, oxygen consumption, and extracellular acidification rates, indicating nonreversal of ANT of compromised in situ neuronal and astrocytic mitochondria; and by bioluminescence ATP measurements in COS-7 cells transfected with cytosolic- or nuclear-targeted luciferases and treated with mitochondrial respiratory chain inhibitors in the presence of glycolytic plus mitochondrial vs. only mitochondrial substrates. Our findings imply the possibility of a rescue mechanism that is protecting against cytosolic/nuclear ATP depletion under pathological conditions involving impaired respiration. This mechanism comes into play when mitochondria respire on substrates that support matrix substrate-level phosphorylation.


Assuntos
Potencial da Membrana Mitocondrial , Translocases Mitocondriais de ADP e ATP/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Mitocôndrias/metabolismo , Neurônios , Fosforilação , Coelhos , Ratos , Ratos Sprague-Dawley , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA