Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epigenetics Chromatin ; 14(1): 54, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895312

RESUMO

BACKGROUND: Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS: We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS: First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δß > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δß > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δß > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δß > 0.05). CONCLUSION: Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.


Assuntos
COVID-19/genética , Metilação de DNA , Expressão Gênica , SARS-CoV-2 , Caracteres Sexuais , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Poluentes Atmosféricos/efeitos adversos , Enzima de Conversão de Angiotensina 2/genética , Proteínas Reguladoras de Apoptose/genética , COVID-19/virologia , Criança , Pré-Escolar , Cromossomos Humanos X , Proteínas Correpressoras/genética , Feminino , Genes Ligados ao Cromossomo X , Glutationa Peroxidase/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fumar/efeitos adversos , Sulfotransferases/genética , Adulto Jovem , beta-Arrestina 2/genética , Glutationa Peroxidase GPX1
2.
Dev Psychobiol ; 63(6): e22174, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34333774

RESUMO

Adverse childhood experiences (ACEs), or cumulative childhood stress exposures, such as abuse, neglect, and household dysfunction, predict later health problems in both the exposed individuals and their offspring. One potential explanation suggests exposure to early adversity predicts epigenetic modification, especially DNA methylation (DNAm), linked to later health. Stress experienced preconception by mothers may associate with DNAm in the next generation. We hypothesized that fathers' exposure to ACEs also associates with their offspring DNAm, which, to our knowledge, has not been previously explored. An epigenome-wide association study (EWAS) of blood DNAm (n = 45) from 3-month-old infants was regressed onto fathers' retrospective ACEs at multiple Cytosine-phosphate-Guanosine (CpG) sites to discover associations. This accounted for infants' sex, age, ethnicity, cell type proportion, and genetic variability. Higher ACE scores associated with methylation values at eight CpGs. Post-hoc analysis found no contribution of paternal education, income, marital status, and parental postpartum depression, but did with paternal smoking and BMI along with infant sleep latency. These same CpGs also contributed to the association between paternal ACEs and offspring attention problems at 3 years. Collectively, these findings suggested there were biological associations with paternal early life adversity and offspring DNAm in infancy, potentially affecting offspring later childhood outcomes.


Assuntos
Experiências Adversas da Infância , Metilação de DNA , Criança , Pré-Escolar , Metilação de DNA/genética , Epigênese Genética/genética , Pai , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos
3.
Nucleic Acids Res ; 49(16): 9097-9116, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403484

RESUMO

Sex is a modulator of health that has been historically overlooked in biomedical research. Recognizing this knowledge gap, funding agencies now mandate the inclusion of sex as a biological variable with the goal of stimulating efforts to illuminate the molecular underpinnings of sex biases in health and disease. DNA methylation (DNAm) is a strong molecular candidate for mediating such sex biases; however, a robust and well characterized annotation of sex differences in DNAm is yet to emerge. Beginning with a large (n = 3795) dataset of DNAm profiles from normative adult whole blood samples, we identified, validated and characterized autosomal sex-associated co-methylated genomic regions (sCMRs). Strikingly, sCMRs showed consistent sex differences in DNAm over the life course and a subset were also consistent across cell, tissue and cancer types. sCMRs included sites with known sex differences in DNAm and links to health conditions with sex biased effects. The robustness of sCMRs enabled the generation of an autosomal DNAm-based predictor of sex with 96% accuracy. Testing this tool on blood DNAm profiles from individuals with sex chromosome aneuploidies (Klinefelter [47,XXY], Turner [45,X] and 47,XXX syndrome) revealed an intimate relationship between sex chromosomes and sex-biased autosomal DNAm.


Assuntos
Metilação de DNA , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Processos de Determinação Sexual/genética , Cromossomos/genética , Ilhas de CpG , Feminino , Humanos , Masculino
4.
Biol Reprod ; 102(1): 63-75, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436293

RESUMO

Prepregnancy obesity associates with adverse reproductive outcomes that impact maternal and fetal health. While obesity-driven mechanisms underlying adverse pregnancy outcomes remain unclear, local uterine immune cells are strong but poorly studied candidates. Uterine immune cells, particularly uterine natural killer cells (uNKs), play central roles in orchestrating developmental events in pregnancy. However, the effect of obesity on uNK biology is poorly understood. Using an obesogenic high-fat/high-sugar diet (HFD) mouse model, we set out to examine the effects of maternal obesity on uNK composition and establishment of the maternal-fetal interface. HFD exposure resulted in weight gain-dependent increases in systemic inflammation and rates of fetal resorption. While HFD did not affect total uNK frequencies, HFD exposure did lead to an increase in natural cytotoxicity receptor-1 expressing uNKs as well as overall uNK activity. Importantly, HFD-associated changes in uNK coincided with impairments in uterine artery remodeling in mid but not late pregnancy. Comparison of uNK mRNA transcripts from control and HFD mice identified HFD-directed changes in genes that play roles in promoting activity/cytotoxicity and vascular biology. Together, this work provides new insight into how obesity may impact uNK processes central to the establishment of the maternal-fetal interface in early and mid pregnancy. Moreover, these findings shed light on the cellular processes affected by maternal obesity that may relate to overall pregnancy health.


Assuntos
Dieta Hiperlipídica , Células Matadoras Naturais/imunologia , Útero/imunologia , Remodelação Vascular/fisiologia , Animais , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Fator de Necrose Tumoral alfa/sangue , Útero/irrigação sanguínea , Útero/metabolismo
5.
Placenta ; 82: 42-45, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174625

RESUMO

Placental-derived miRNAs are attractive candidates as biomarkers of placental health, but their associations with specific pathologies, such as acute chorioamnionitis (aCA), are not well explored. Samples of chorionic villi from 57 placentas (33 aCA and 24 non-aCA) were analyzed. Expression was quantified for six candidate miRNAs (miR-146a, miR-210, miR-223, miR-338-3p, miR-411, and miR-518b), using quantitative real-time PCR. miR-518b and miR-338-3p were differentially expressed between aCA cases and non-aCA cases (Bonferroni-corrected p < 0.05). Further, we observed that placental miR-518b expression was associated with an IL6 SNP (rs1800796), a polymorphism we previously reported as a risk-conferring variant for aCA.


Assuntos
Corioamnionite/metabolismo , Interleucina-6/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Polimorfismo de Nucleotídeo Único , Adulto , Corioamnionite/genética , Vilosidades Coriônicas/metabolismo , Feminino , Regulação da Expressão Gênica , Genótipo , Humanos , MicroRNAs/genética , Gravidez , Adulto Jovem
6.
BMC Med Genet ; 20(1): 36, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795743

RESUMO

BACKGROUND: Acute chorioamnionitis (aCA), inflammation of the placenta and fetal membranes, is a frequently reported lesion in preterm deliveries. Genetic variants in innate immune system genes such as Interleukin-6 (IL6) may contribute to the placenta's inflammatory response, thus predisposing some pregnancies to aCA. These genetic variants may modulate molecular processes such as DNA methylation and gene expression, and in turn might affect susceptibility to aCA. Currently, there is remarkably little research on the role of fetal (placental) genetic variation in aCA. We aimed to explore the associations between genetic variants in candidate immune-system genes and susceptibility towards inflammatory responses in the placenta, which is linked to a strong inflammatory response in the newborn. METHODS: DNA samples from 269 placentas (72 aCA cases, 197 non-aCA cases) were collected for this study. Samples were genotyped at 55 ancestry informative markers (AIMs) and 16 additional single nucleotide polymorphisms (SNPs) in 12 candidate innate immune system genes using the Sequenom iPLEX Gold Assay. Publicly available datasets were used to obtain DNA methylation (GSE100197, GSE74738, GSE115508, GSE44667, GSE98224) and gene expression data (GSE44711, GSE98224). RESULTS: Differences in IL6 placental allele frequencies were associated with aCA (rs1800796, p = 0.04) with the CC genotype specifically implicated (OR = 3.1; p = 0.02). In a subset of the placental samples (n = 67; chorionic villi), we showed that the IL6 SNP (rs1800796) was associated with differential DNA methylation in five IL6-related CpG sites (cg01770232, cg02335517, cg07998387, cg13104385, and cg0526589), where individuals with a CC genotype showed higher DNA methylation levels than individuals carrying the GG genotype. Using two publicly available datasets, we observed that the DNA methylation levels at cg01770232 negatively correlated with IL6 gene expression in the placenta (r = - 0.67, p < 0.004; r = - 0.56, p < 2.937e-05). CONCLUSIONS: We demonstrated that the minor C allele at the IL6 SNP (rs1800796), which is largely limited to East Asian populations, is associated with the presence of aCA. This SNP was associated with increased DNA methylation at a nearby MEPC2 binding site, which was also associated with decreased expression of IL6 in the placenta. Decreased expression of IL6 may increase vulnerability to microbial infection. Additional studies are required to confirm this association in Asian populations with larger sample sizes.


Assuntos
Corioamnionite/genética , Metilação de DNA , Regulação para Baixo , Interleucina-6/genética , Placenta/química , Polimorfismo de Nucleotídeo Único , Sítios de Ligação , Estudos de Casos e Controles , Ilhas de CpG , Epigênese Genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Interleucina-6/metabolismo , Masculino , Idade Materna , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA