Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 114(1): 4, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227103

RESUMO

Although many important discoveries have been made regarding the jasmonate signaling pathway, how jasmonate biosynthesis is initiated is still a major unanswered question in the field. Previous evidences suggest that jasmonate biosynthesis is limited by the availability of fatty acid precursor, such as ⍺-linolenic acid (⍺-LA). This indicates that the lipase responsible for releasing α-LA in the chloroplast, where early steps of jasmonate biosynthesis take place, is the key initial step in the jasmonate biosynthetic pathway. Nicotiana benthamiana glycerol lipase A1 (NbGLA1) is homologous to N. attenuata GLA1 (NaGLA1) which has been reported to be a major lipase in leaves for jasmonate biosynthesis. NbGLA1 was studied for its potential usefulness in a species that is more common in laboratories. Virus-induced gene silencing of both NbGLA1 and NbGLA2, another homolog, resulted in more than 80% reduction in jasmonic acid (JA) biosynthesis in wounded leaves. Overexpression of NbGLA1 utilizing an inducible vector system failed to increase JA, indicating that transcriptional induction of NbGLA1 is insufficient to trigger JA biosynthesis. However, co-treatment with wounding in addition to NbGLA1 induction increased JA accumulation several fold higher than the gene expression or wounding alone, indicating an enhancement of the enzyme activity by wounding. Domain-deletion of a 126-bp C-terminal region hypothesized to have regulatory roles increased NbGLA1-induced JA level. Together, the data show NbGLA1 to be a major lipase for wound-induced JA biosynthesis in N. benthamiana leaves and demonstrate the use of inducible promoter-driven construct of NbGLA1 in conjunction with its transient expression in N. benthamiana as a useful system to study its protein function.


Assuntos
Lipase , Nicotiana , Oxilipinas , Nicotiana/genética , Lipase/genética , Cloroplastos , Ciclopentanos , Glicerol
3.
Plant Signal Behav ; 13(5): e1464361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29701541

RESUMO

Recent studies have shown that it is possible to engineer substantial increases in triacylglycerol (TAG) content in plant vegetative biomass, which offers a novel approach for increasing the energy density of food, feed, and bioenergy crops or for creating a sink for the accumulation of unusual, high-value fatty acids. However, whether or not these changes in lipid metabolism affect plant responses to biotic and/or abiotic stresses is an open question. Here we show that transgenic Arabidopsis thaliana plant lines engineered for elevated leaf oil content, as well as lines engineered for accumulation of unusual conjugated fatty acids in leaf oil, had similar short-term responses to heat stress (e.g., 3 days at 37°C) as wild-type plants, including a reduction in polyunsaturated fatty acid (PUFA)-containing polar lipids and an increase in PUFA-containing neutral lipids. At extended time periods (e.g., 14 days at 37°C), however, plant lines containing accumulated conjugated fatty acids displayed earlier senescence and plant death. Further, no-choice feeding studies demonstrated that plants with the highest leaf oil content generated cabbage looper (Trichoplusia ni) insects with significantly heavier body weights. Taken together, these results suggest that biotic and abiotic responses will be important considerations when developing and deploying high-oil-biomass crops in the field.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Estresse Fisiológico/fisiologia
4.
Plant Physiol ; 176(1): 511-523, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180381

RESUMO

Damaged cells send various signals to stimulate defense responses. Recent identification and genetic studies of the plant purinoceptor, P2K1 (also known as DORN1), have demonstrated that extracellular ATP is a signal involved in plant stress responses, including wounding, perhaps to evoke plant defense. However, it remains largely unknown how extracellular ATP induces plant defense responses. Here, we demonstrate that extracellular ATP induces plant defense mediated through activation of the intracellular signaling of jasmonate (JA), a well-characterized defense hormone. In Arabidopsis (Arabidopsis thaliana) leaves, ATP pretreatment induced resistance against the necrotrophic fungus, Botrytis cinerea The induced resistance was enhanced in the P2K1 receptor overexpression line, but reduced in the receptor mutant, dorn1-3 Mining the transcriptome data revealed that ATP induces a set of JA-induced genes. In addition, the P2K1-associated coexpression network contains defense-related genes, including those encoding jasmonate ZIM-domain (JAZ) proteins, which play key roles as repressors of JA signaling. We examined whether extracellular ATP impacts the stability of JAZ1 in Arabidopsis. The results showed that the JAZ1 stability decreased in response to ATP addition in a proteasome-dependent manner. This reduction required intracellular signaling via second messengers-cytosolic calcium, reactive oxygen species, and nitric oxide. Interestingly, the ATP-induced JAZ1 degradation was attenuated in the JA receptor mutant, coi1, but not in the JA biosynthesis mutant, aos, or upon addition of JA biosynthesis inhibitors. Immunoprecipitation analysis demonstrated that ATP increases the interaction between COI1 and JAZ1, suggesting direct cross talk between extracellular ATP and JA in intracellular signaling events. Taken together, these results suggest that extracellular ATP signaling directly impacts the JA signaling pathway to maximize plant defense responses.


Assuntos
Trifosfato de Adenosina/farmacologia , Arabidopsis/imunologia , Ciclopentanos/metabolismo , Espaço Extracelular/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Botrytis/fisiologia , Cálcio/metabolismo , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Óxido Nítrico/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Mol Plant Pathol ; 17(4): 588-600, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26310916

RESUMO

Plants have developed diverse mechanisms to fine tune defence responses to different types of enemy. Cross-regulation between signalling pathways may allow the prioritization of one response over another. Previously, we identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent effector-triggered immunity against the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4. The use of multiple stresses is a powerful tool to further define gene function. Here, we examined whether SRFR1 also impacts resistance to a herbivorous insect in leaves and to a cyst nematode in roots. Interestingly, srfr1-1 plants showed increased resistance to herbivory by the beet army worm Spodoptera exigua and to parasitism by the cyst nematode Heterodera schachtii compared with the corresponding wild-type Arabidopsis accession RLD. Using quantitative real-time PCR (qRT-PCR) to measure the transcript levels of salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathway genes, we found that enhanced resistance of srfr1-1 plants to S. exigua correlated with specific upregulation of the MYC2 branch of the JA pathway concurrent with suppression of the SA pathway. In contrast, the greater susceptibility of RLD was accompanied by simultaneously increased transcript levels of SA, JA and JA/ET signalling pathway genes. Surprisingly, mutation of either SRFR1 or EDS1 increased resistance to H. schachtii, indicating that the concurrent presence of both wild-type genes promotes susceptibility. This finding suggests a novel form of resistance in Arabidopsis to the biotrophic pathogen H. schachtii or a root-specific regulation of the SA pathway by EDS1, and places SRFR1 at an intersection between multiple defence pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/parasitologia , Herbivoria , Parasitos/fisiologia , Spodoptera/fisiologia , Tylenchoidea/fisiologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Ciclopentanos/farmacologia , Resistência à Doença/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Herbivoria/genética , Oxilipinas/farmacologia , Parasitos/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/farmacologia , Spodoptera/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Plant J ; 74(3): 383-97, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23360095

RESUMO

In addition to the classical functions of flavonoids in the response to biotic/abiotic stress conditions, these phenolic compounds have been implicated in the modulation of various developmental processes. These findings suggest that flavonoids are more integral components of the plant signaling machinery than traditionally recognized. To understand how flux through the flavonoid pathway affects plant cellular processes, we used wild-type and chalcone isomerase mutant (transparent testa 5, tt5) seedlings grown under anthocyanin inductive conditions, in the presence or absence of the flavonoid intermediate naringenin, the product of the chalcone isomerase enzyme. Because flavonoid biosynthetic genes are expressed under anthocyanin inductive conditions regardless of whether anthocyanins are formed or not, this system provides an excellent opportunity to specifically investigate the molecular changes associated with increased flux through the flavonoid pathway. By assessing genome-wide mRNA accumulation changes in naringenin-treated and untreated tt5 and wild-type seedlings, we identified a flavonoid-responsive gene set associated with cellular trafficking, stress responses and cellular signaling. Jasmonate biosynthetic genes were highly represented among the signaling pathways induced by increased flux through the flavonoid pathway. In contrast to studies showing a role for flavonoids in the control of auxin transport, no effect on auxin-responsive genes was observed. Taken together, our data suggest that Arabidopsis can sense flavonoids as a signal for multiple fundamental cellular processes.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética/métodos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alelos , Antocianinas/genética , Antocianinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meios de Cultura/metabolismo , Ciclopentanos/metabolismo , Flavanonas/metabolismo , Flavanonas/farmacologia , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Oxilipinas/metabolismo , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant Physiol ; 130(2): 823-36, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12376647

RESUMO

Plastid envelope proteins from the Arabidopsis nuclear genome were predicted using computational methods. Selection criteria were: first, to find proteins with NH(2)-terminal plastid-targeting peptides from all annotated open reading frames from Arabidopsis; second, to search for proteins with membrane-spanning domains among the predicted plastidial-targeted proteins; and third, to subtract known thylakoid membrane proteins. Five hundred forty-one proteins were selected as potential candidates of the Arabidopsis plastid inner envelope membrane proteins (AtPEM candidates). Only 34% (183) of the AtPEM candidates could be assigned to putative functions based on sequence similarity to proteins of known function (compared with the 69% function assignment of the total predicted proteins in the genome). Of the 183 candidates with assigned functions, 40% were classified in the category of "transport facilitation," indicating that this collection is highly enriched in membrane transporters. Information on the predicted proteins, tissue expression data from expressed sequence tags and microarrays, and publicly available T-DNA insertion lines were collected. The data set complements proteomic-based efforts in the increased detection of integral membrane proteins, low-abundance proteins, or those not expressed in tissues selected for proteomic analysis. Digital northern analysis of expressed sequence tags suggested that the transcript levels of most AtPEM candidates were relatively constant among different tissues in contrast to stroma and the thylakoid proteins. However, both digital northern and microarray analyses identified a number of AtPEM candidates with tissue-specific expression patterns.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Membrana/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Biologia Computacional , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Flores/genética , Flores/metabolismo , Proteínas Nucleares/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Análise Serial de Proteínas/métodos , Proteômica/métodos , Sementes/genética , Sementes/metabolismo , Especificidade por Substrato , Tilacoides/metabolismo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA