RESUMO
Acute gastric dilatation (AGD) is one of the most prevalent and life-threatening diseases in nonhuman primates worldwide. However, the etiology of this syndrome has not been determined. Recently, sudden death occurred in a 7-year-old female cynomolgus monkey with a history of fecal microbiota transplantation using diarrheic stools. The monkey had undergone surgery previously. On necropsy, gastric dilatation and rupture demonstrated a tetrad arrangement on histopathologic examination. On 16S rRNA sequencing, a high population of Clostridium ventriculi was identified in the duodenum adjacent to stomach but not in the colon. This paper is the first report of Clostridium ventriculi infection in a cynomolgus macaque with acute gastric dilatation and rupture.
Assuntos
Clostridium , Dilatação Gástrica , Feminino , Animais , Macaca fascicularis , Dilatação Gástrica/veterinária , Dilatação Gástrica/patologia , RNA Ribossômico 16SRESUMO
Several COVID-19 platforms have been licensed across the world thus far, but vaccine platform research that can lead to effective antigen delivery is still ongoing. Here, we constructed AdCLD-CoV19 that could modulate humoral immunity by harboring SARS-CoV-2 antigens onto a chimeric adenovirus 5/35 platform that was effective in cellular immunity. By replacing the S1/S2 furin cleavage sequence of the SARS-CoV-2 Spike (S) protein mounted on AdCLD-CoV19 with the linker sequence, high antigen expression was confirmed in various cell lines. The high levels of antigen expression contributed to antigen-specific antibody activity in mice and non-human primates (NHPs) with a single vaccination of AdCLD-CoV19. Furthermore, the adenovirus-induced Th1 immune response was specifically raised for the S protein, and these immune responses protected the NHP against live viruses. While AdCLD-CoV19 maintained neutralizing antibody activity against various SARS-CoV-2 variants, it was reduced to single vaccination for ß and ο variants, and the reduced neutralizing antibody activity was restored with booster shots. Hence, AdCLD-CoV19 can prevent SARS-CoV-2 with a single vaccination, and the new vaccine administration strategy that responds to various variants can maintain the efficacy of the vaccine.
RESUMO
In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans. Therefore, large animals may be more useful for the investigation of pancreatic cancer. Pigs have recently emerged as a new model of pancreatic cancer due to their similarities to humans, but no pig pancreatic cancer cell lines have been established for use in drug screening or analysis of tumor biology. Here, we established and characterized an immortalized miniature pig pancreatic cell line derived from primary pancreatic cells and pancreatic cancer-like cells expressing K-rasG12D regulated by the human PTF1A promoter. Using this immortalized cell line, we analyzed the gene expression and phenotypes associated with cancer cell characteristics. Notably, we found that acinar-to-ductal transition was caused by K-rasG12D in the cell line constructed from acinar cells. This may constitute a good research model for the analysis of acinar-to-ductal metaplasia in human pancreatic cancer.
Assuntos
Pâncreas/metabolismo , Neoplasias Pancreáticas/genética , Lesões Pré-Cancerosas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Pâncreas/patologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Transdução de Sinais/genética , Suínos , Porco MiniaturaRESUMO
SIRT3 (sirtuin 3), a mitochondrial protein deacetylase, maintains respiratory function, but its role in the regulation of innate immune defense is largely unknown. Herein, we show that SIRT3 coordinates mitochondrial function and macroautophagy/autophagy activation to promote anti-mycobacterial responses through PPARA (peroxisome proliferator activated receptor alpha). SIRT3 deficiency enhanced inflammatory responses and mitochondrial dysfunction, leading to defective host defense and pathological inflammation during mycobacterial infection. Antibody-mediated depletion of polymorphonuclear neutrophils significantly increased protection against mycobacterial infection in sirt3-/- mice. In addition, mitochondrial oxidative stress promoted excessive inflammation induced by Mycobacterium tuberculosis infection in sirt3-/- macrophages. Notably, SIRT3 was essential for the enhancement of PPARA, a key regulator of mitochondrial homeostasis and autophagy activation in the context of infection. Importantly, overexpression of either PPARA or TFEB (transcription factor EB) in sirt3-/- macrophages recovered antimicrobial activity through autophagy activation. Furthermore, pharmacological activation of SIRT3 enhanced antibacterial autophagy and functional mitochondrial pools during mycobacterial infection. Finally, the levels of SIRT3 and PPARA were downregulated and inversely correlated with TNF (tumor necrosis factor) levels in peripheral blood mononuclear cells from tuberculosis patients. Collectively, these data demonstrate a previously unappreciated function of SIRT3 in orchestrating mitochondrial and autophagic functions to promote antimycobacterial responses. Abbreviations: Ab: antibody; BCG: M. bovis Bacillus Calmette-Guérin; Baf-A1: bafilomycin A1; BMDMs: bone marrow-derived macrophages; CFU: colony forming unit; CXCL5: C-X-C motif chemokine ligand 5; EGFP: enhanced green fluorescent protein; ERFP: enhanced red fluorescent protein; FOXO3: forkhead box O3; HC: healthy controls; H&E: haematoxylin and eosin; HKL: honokiol; IHC: immunohistochemistry; IL1B: interleukin 1 beta; IL6: interleukin 6; IL12B: interleukin 12B; MDMs: monocyte-derived macrophages; MMP: mitochondrial membrane potential; Mtb: Mycobacterium tuberculosis; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffered saline; PMN: polymorphonuclear neutrophil; PPARA: peroxisome proliferator activated receptor alpha; ROS: reactive oxygen species; SIRT3: sirtuin 3; TB: tuberculosis; TEM: transmission electron microscopy; TFEB: transcription factor EB; TNF: tumor necrosis factor.
Assuntos
Antibacterianos/metabolismo , Autofagia , Mitocôndrias/metabolismo , Mycobacterium/metabolismo , Sirtuína 3/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Feminino , Homeostase , Humanos , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Mycobacterium/ultraestrutura , Neutrófilos/patologia , Estresse Oxidativo , PPAR alfa/metabolismo , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Sirtuína 3/deficiência , Tuberculose/sangue , Tuberculose/microbiologia , Tuberculose/patologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Infectious bronchitis virus (IBV) replicates primarily in the respiratory tract and grows in various organs in chickens, with or without pathological effects. The diversity of this virus has been verified by sequence analysis of the S1 glycoprotein gene, but this method must be supplemented with further analysis for characterization of the agent. To increase our understanding of the pathogenesis of the disease caused by this virus, we investigated the response of chickens to 2 IBV with different genotypes, KIIa and ChVI. The clinical signs induced by the viruses were observed. In addition, the mRNA levels of the pro-inflammatory cytokines, IL-6, IL-1ß, and lipopolysaccharide-induced tumor necrosis factor-α factor and the serum levels of α1-acid glycoprotein, which is a major acute phase protein, were measured. The KIIa genotype (Kr/ADL110002/2011) induced clinical signs accompanied by the excessive production of pro-inflammatory cytokines and a higher viral load. In chickens infected with this isolate, simultaneous peaks in the viral copy number and cytokine production were observed at 7 dpi in the trachea and 9 d postinoculation in the kidney. On the other hand, the chickens infected with the ChVI genotype (Kr/ADL120003/2012) did not show a response other than a mild upregulation of cytokines at 1 d postinoculation, which appears to indicate the invasion of the virus. In summary, we confirmed a differential innate response following infection with distinct IBV. We hypothesize that an excessive innate response contributes to the scale of the pathophysiologic effect in chickens.