Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Arch Pharm Res ; 47(6): 558-570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874747

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an increasingly pressing global health challenge, with increasing mortality rates showing an upward trend. Two million deaths occur annually from cirrhosis and liver cancer together each year. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key effectors of the Hippo signaling pathway, critically regulate tissue homeostasis and disease progression in the liver. While initial studies have shown that YAP expression is normally restricted to cholangiocytes in healthy livers, the activation of YAP/TAZ is observed in other hepatic cells during chronic liver disease. The disease-driven dysregulation of YAP/TAZ appears to be a critical element in the MASLD progression, contributing to hepatocyte dysfunction, inflammation, and fibrosis. In this study, we focused on the complex roles of YAP/TAZ in MASLD and explored how the YAP/TAZ dysregulation of YAP/TAZ drives steatosis, inflammation, fibrosis, and cirrhosis. Finally, the cell-type-specific functions of YAP/TAZ in different types of hepatic cells, such as hepatocytes, hepatic stellate cells, hepatic macrophages, and biliary epithelial cells are discussed, highlighting the multifaceted impact of YAP/TAZ on liver physiology and pathology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Progressão da Doença , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Transativadores/metabolismo , Transdução de Sinais
2.
Biochem Biophys Res Commun ; 681: 186-193, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783116

RESUMO

Primary cilia are essential cellular antennae that transmit external signals into intracellular responses. These sensory organelles perform crucial tasks in triggering intracellular signaling pathways, including those initiated by G protein-coupled receptors (GPCRs). Given the involvement of GPCRs in serum-induced signaling, we investigated the contribution of ciliary proteins in mitogen perception and cell proliferation. We found that depletion of cilia via IFT88 silencing impaired cell growth and repressed YAP activation against serum and its mitogenic constituents, namely lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). To identify the key player of serum mitogen signaling, a mutant cell line library with 30 ablated individual ciliary proteins was established and screened based on YAP dephosphorylation and target gene induction. While 9 of them had altered signaling, ablation of IFT38 or IFT144 led to a particularly robust repression of YAP activation upon LPA and S1P. The deficiency of IFT38 and IFT144 attenuated cell proliferation, as corroborated in either 2-dimensional cultures or tumor spheroids. In subcutaneous skin melanoma patients, expression of IFT38 and IFT144 was associated with unfavorable outcomes in overall survival. In conclusion, our study demonstrates the involvement of ciliary proteins in mitogen signaling and identifies the regulatory roles of IFT38 and IFT144 in serum-mediated Hippo pathway signaling and cellular growth.


Assuntos
Mitógenos , Transdução de Sinais , Humanos , Linhagem Celular , Proliferação de Células , Lisofosfolipídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
3.
Exp Mol Med ; 55(5): 1033-1045, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121980

RESUMO

Memory-phenotype (MP) CD4+ T cells are a substantial population of conventional T cells that exist in steady-state mice, yet their immunological roles in autoimmune disease remain unclear. In this work, we unveil a unique phenotype of MP CD4+ T cells determined by analyzing single-cell transcriptomic data and T cell receptor (TCR) repertoires. We found that steady-state MP CD4+ T cells in the spleen were composed of heterogeneous effector subpopulations and existed regardless of germ and food antigen exposure. Distinct subpopulations of MP CD4+ T cells were specifically activated by IL-1 family cytokines and STAT activators, revealing that the cells exerted TCR-independent bystander effector functions similar to innate lymphoid cells. In particular, CCR6high subpopulation of MP CD4+ T cells were major responders to IL-23 and IL-1ß without MOG35-55 antigen reactivity, which gave them pathogenic Th17 characteristics and allowed them to contribute to autoimmune encephalomyelitis. We identified that Bhlhe40 in CCR6high MP CD4+ T cells as a key regulator of GM-CSF expression through IL-23 and IL-1ß signaling, contributing to central nervous system (CNS) pathology in experimental autoimmune encephalomyelitis. Collectively, our findings reveal the clearly distinct effector-like heterogeneity of MP CD4+ T cells in the steady state and indicate that CCR6high MP CD4+ T cells exacerbate autoimmune neuroinflammation via the Bhlhe40/GM-CSF axis in a bystander manner.


Assuntos
Encefalomielite Autoimune Experimental , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imunidade Inata , Doenças Neuroinflamatórias , Encefalomielite Autoimune Experimental/metabolismo , Células Th17 , Interleucina-23 , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos , Camundongos Endogâmicos C57BL , Proteínas de Homeodomínio/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
4.
Biomol Ther (Seoul) ; 31(1): 48-58, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579460

RESUMO

Interferon regulatory factor 3 (IRF3) integrates both immunological and non-immunological inputs to control cell survival and death. Small GTPases are versatile functional switches that lie on the very upstream in signal transduction pathways, of which duration of activation is very transient. The large number of homologous proteins and the requirement for site-directed mutagenesis have hindered attempts to investigate the link between small GTPases and IRF3. Here, we constructed a constitutively active mutant expression library for small GTPase expression using Gibson assembly cloning. Small-scale screening identified multiple GTPases capable of promoting IRF3 phosphorylation. Intriguingly, 27 of 152 GTPases, including ARF1, RHEB, RHEBL1, and RAN, were found to increase IRF3 phosphorylation. Unbiased screening enabled us to investigate the sequence-activity relationship between the GTPases and IRF3. We found that the regulation of IRF3 by small GTPases was dependent on TBK1. Our work reveals the significant contribution of GTPases in IRF3 signaling and the potential role of IRF3 in GTPase function, providing a novel therapeutic approach against diseases with GTPase overexpression or active mutations, such as cancer.

5.
Sci Rep ; 12(1): 20170, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424462

RESUMO

We investigated the function of thymosin beta-4 (TB4) expression and primary cilium (PC) formation via the underlying Nrf2-dependent mechanism for cervical cancer cell (CC) survival under conditions of serum deprivation (SD). TB4 silencing was achieved using RNA interference. The percentage of PC formation was analyzed by immunofluorescence staining. Nrf2 expression was modified by the preparation of stable Nrf2-knockdown cells with shNrf2 and the overexpression of Nrf2 with pcDNA-Nrf2 plasmids. Gene expression was measured using reverse-transcription PCR, Gaussia luciferase assay, and western blotting. Cell viability was assessed using the MTT assay or CellTiter Glo assay. Reactive oxygen species (ROS) were detected with flow cytometry. CCs incubated in SD without fetal bovine serum remained viable, and SD increased PC formation and TB4 transcription. CC viability was further decreased by treatment with ciliobrevin A to inhibit PC formation or TB4-siRNA. SD increased ROS, including H2O2. N-acetylcysteine inhibited ROS production following H2O2 treatment or SD, which also decreased PC formation and TB4 transcription. Meanwhile, H2O2 increased PC formation, which was attenuated in response to TB4 siRNA. Treatment with H2O2 increased Nrf2 expression, antioxidant responsive element (ARE) activity, and PC formation, which were inhibited by the Nrf2 inhibitor clobestasol propionate. Nrf2 knockdown via expression of Tet-On shNrf2 enhanced ROS production, leading to increased PC formation and decreased TB4 expression; these effects were counteracted by Nrf2 overexpression. Our data demonstrate that Nrf2 counter-regulates TB4 expression and PC formation for CC survival under conditions of SD, suggesting cervical CC survival could be upregulated by PC formation via Nrf2 activation and TB4 expression.


Assuntos
Fator 2 Relacionado a NF-E2 , Timosina , Humanos , Sobrevivência Celular/genética , Cílios/metabolismo , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Interferente Pequeno/metabolismo , Células HeLa , Timosina/metabolismo
6.
Trends Mol Med ; 28(6): 482-496, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466061

RESUMO

With the advent of cancer immunotherapy, immunomodulation has emerged as an important strategy for the treatment of various diseases. We review recent advances in clinical trials of cell-penetrating peptide (CPP) applications for immunotherapy and also discuss their challenges and opportunities for preclinical studies in various immune diseases. CPP conjugation to antigenic peptides or proteins can enable efficient antigen uptake and cross-presentation by antigen-presenting cells (APCs), which induce both humoral and cytotoxic responses. In addition, CPP-coupled immune modulators can enhance antitumor immunity or anti-inflammatory effects to regulate allergies and autoimmunity. Given their huge advantages in overcoming delivery barriers, CPP-based strategies for immunomodulation could extend drug optimization and advance immunotherapy in various human diseases.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/farmacologia , Humanos , Imunidade , Imunomodulação , Imunoterapia , Preparações Farmacêuticas
7.
Methods Mol Biol ; 2383: 347-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766301

RESUMO

About 30 years ago, the discovery of CPP improved the therapeutic approach to treat diseases and extended the range of potential targets to intracellular molecules. There are potential drug candidates for FDA approval based on active studies in basic research, preclinical, and clinical trials. Various attempts by CPP application to control the diseases such as allergy, autoimmunity, cancer, and infection demonstrated a strategy to make a new drug pipeline for successful discovery of a biologic drug for immune modulation. However, there are still no CPP-based drug candidates for immune-related diseases in the clinical stage. To control immune responses successfully, not only increasing delivery efficiency of CPPs but also selecting potential target cells and cargoes could be important issues. In particular, as it becomes possible to control intracellular targets, efforts to find various novel potential target are being attempted. In this chapter, we focused on CPP-based approaches to treat diseases through modulation of immune responses and discussed for perspectives on future direction of the research for successful application of CPP technology to immune modulation and disease therapy in clinical trial.


Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/uso terapêutico , Sistemas de Liberação de Medicamentos , Imunidade , Preparações Farmacêuticas
8.
J Cachexia Sarcopenia Muscle ; 12(6): 1669-1689, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34523817

RESUMO

BACKGROUND: Skeletal muscle as a metabolic consumer determines systemic energy homeostasis by regulating myofibre type conversion and muscle mass control. Perturbation of the skeletal muscle metabolism elevates the risk of a variety of diseases including metabolic disorders. However, the regulatory pathways and molecules are not completely understood. The discovery of relevant responsible molecules and the associated network could be an attractive strategy to overcome diseases associated with muscle problems. METHODS: An initial screening using quantitative trait locus analysis enabled us to extract a set of genes including ubiquitin-specific proteases21 (USP21) (r = 0.738; P = 0.004) as potential targets associated with fasting blood glucose content. Given tight regulation of the ubiquitination status of proteins in muscle, we focused on USP21 and generated whole-body (KO) and skeletal muscle-specific USP21 knockout (MKO) mice. Transcriptomics, proteomics, and lipidomics assays in combination with various in vivo and in vitro experiments were performed to understand the functions of USP21 and underlying mechanisms. A high-fat diet (60%)-fed mouse model and diabetic patient-derived samples were utilized to assess the effects of USP21 on energy metabolism in skeletal muscle. RESULTS: USP21 was highly expressed in both human and mouse skeletal muscle, and controlled skeletal muscle oxidative capacity and fuel consumption. USP21-KO or USP21-MKO significantly promoted oxidative fibre type changes (Δ36.6% or Δ47.2%), muscle mass increase (Δ13.8% to Δ22.8%), and energy expenditure through mitochondrial biogenesis, fatty acid oxidation, and UCP2/3 induction (P < 0.05 or P < 0.01). Consistently, cold exposure repressed USP21 expression in mouse skeletal muscle (Δ55.3%), whereas loss of USP21 increased thermogenesis (+1.37°C or +0.84°C; P < 0.01). Mechanistically, USP21 deubiquitinated DNA-PKcs and ACLY, which led to AMPK inhibition. Consequently, USP21 ablation diminished diet-induced obesity (WT vs. USP21-KO, Δ8.02 g, 17.1%, P < 0.01; litter vs. USP21-MKO, Δ3.48 g, 7.7%, P < 0.05) and insulin resistance. These findings were corroborated in a skeletal muscle-specific gene KO mouse model. USP21 was induced in skeletal muscle of a diabetic patient (1.94-fold), which was reciprocally changed to p-AMPK (0.30-fold). CONCLUSIONS: The outcomes of this research provide novel information as to how USP21 in skeletal muscle contributes to systemic energy homeostasis, demonstrating USP21 as a key molecule in the regulation of myofibre type switch, muscle mass control, mitochondrial function, and heat generation and, thus, implicating the potential of this molecule and its downstream substrates network as targets for the treatment and/or prevention of muscle dysfunction and the associated metabolic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Humanos , Camundongos , Músculo Esquelético/metabolismo , Obesidade , Estresse Oxidativo , Fenótipo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo
9.
Biomaterials ; 274: 120845, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971559

RESUMO

Sepsis is an acute systemic inflammatory disease triggered by bacterial infection leading organ dysfunctions that macrophages are responsible for major triggering of systemic inflammation. Treatment options are limited to antibiotics and drugs to manage the symptoms of sepsis, but there are currently no molecular-targeted therapies. Here, we identified a novel macrophage-preferable delivery peptide, C10, which we conjugated to truncated domains of NLRX1 (leucine-rich repeat region (LRR), and nucleotide binding domain (NBD)) to obtain C10-LRR and C10-NBD. Leucine rich amino acid of C10 enables macrophage preferable moieties that efficiently deliver a cargo protein into macrophages in vitro and in vivo. C10-LRR but not C10-NBD significantly improved survival in an LPS-mediated lethal endotoxemia sepsis model. C10-LRR efficiently inhibited IL-6 production in peritoneal macrophages via prevention of IκB degradation and p65 phosphorylation. In addition, C10-LRR negatively regulated IL-1ß production by preventing caspase-1 activation with a sustained mitochondrial MAVS level. Finally, co-treatment with anti-TNFα antibody and C10-LRR had a synergistic effect in an LPS-induced sepsis model. Collectively, these findings indicate that C10-LRR could be an effective therapeutic agent to treat systemic inflammation in sepsis by regulating both NF-κB and inflammasome signaling activation.


Assuntos
Inflamassomos , Sepse , Humanos , Leucina , Lipopolissacarídeos , Macrófagos , Proteínas Mitocondriais , NF-kappa B , Sepse/tratamento farmacológico
10.
iScience ; 24(5): 102411, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997693

RESUMO

Enhanced stemness in colorectal cancer has been reported and it contributes to aggressive progression, but the underlying mechanisms remain unclear. Here we report a Wnt ligand, Dickkopf-2 (DKK2) is essential for developing colorectal cancer stemness. Genetic depletion of DKK2 in intestinal epithelial or stem cells reduced tumorigenesis and expression of the stem cell marker genes including LGR5 in a model of colitis-associated cancer. Sequential mutations in APC, KRAS, TP53, and SMAD4 genes in colonic organoids revealed a significant increase of DKK2 expression by APC knockout and further increased by additional KRAS and TP53 mutations. Moreover, DKK2 activates proto-oncogene tyrosine-protein kinse Src followed by increased LGR5 expressing cells in colorectal cancer through degradation of HNF4α1 protein. These findings suggest that DKK2 is required for colonic epithelial cells to enhance LGR5 expression during the progression of colorectal cancer.

11.
Adv Mater ; 32(39): e2003368, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32812291

RESUMO

Cancer immunotherapies, including adoptive T cell transfer and immune checkpoint blockades, have recently shown considerable success in cancer treatment. Nevertheless, transferred T cells often become exhausted because of the immunosuppressive tumor microenvironment. Immune checkpoint blockades, in contrast, can reinvigorate the exhausted T cells; however, the therapeutic efficacy is modest in 70-80% of patients. To address some of the challenges faced by the current cancer treatments, here T-cell-membrane-coated nanoparticles (TCMNPs) are developed for cancer immunotherapy. Similar to cytotoxic T cells, TCMNPs can be targeted at tumors via T-cell-membrane-originated proteins and kill cancer cells by releasing anticancer molecules and inducing Fas-ligand-mediated apoptosis. Unlike cytotoxic T cells, TCMNPs are resistant to immunosuppressive molecules (e.g., transforming growth factor-ß1 (TGF-ß1)) and programmed death-ligand 1 (PD-L1) of cancer cells by scavenging TGF-ß1 and PD-L1. Indeed, TCMNPs exhibit higher therapeutic efficacy than an immune checkpoint blockade in melanoma treatment. Furthermore, the anti-tumoral actions of TCMNPs are also demonstrated in the treatment of lung cancer in an antigen-nonspecific manner. Taken together, TCMNPs have a potential to improve the current cancer immunotherapy.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Linfócitos T/imunologia , Linhagem Celular Tumoral , Humanos , Nanomedicina
12.
Genes Dev ; 34(1-2): 72-86, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31831627

RESUMO

Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Neoplásica da Expressão Gênica , Transativadores/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes fos/genética , Células HEK293 , Humanos , Fígado/metabolismo , Melanoma/fisiopatologia , Camundongos , Mitógenos/farmacologia , Tamanho do Órgão/genética , Regiões Promotoras Genéticas/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Neoplasias Uveais/fisiopatologia , Proteínas de Sinalização YAP
13.
FASEB J ; 33(7): 7953-7969, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30897343

RESUMO

Long noncoding RNA (lncRNA) capable of controlling antioxidative capacity remains to be investigated. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a central molecule for cellular defense that increases antioxidative capacity. We identified a novel lncRNA named Nrf2-activating lncRNA (Nrf2-lncRNA) transcribed from an upstream region of the microRNA 122 gene (MIR122). Nrf2-lncRNA existed in the cytoplasm, suggestive of its function as a competing endogenous RNA [ceRNA, microRNA (miRNA) sponge]. Nrf2-lncRNA served as a ceRNA for polo-like kinase (Plk) 2 and cyclin-dependent kinase inhibitor 1 (p21cip1) through binding of miRNA 128 and miRNA 224, inducing Plk2/Nrf2/p21cip1 complexation for Nrf2 activation in the cells under p53-activating conditions (i.e., DNA damage and serum deprivation). Nrf2-lncRNA expression was suppressed with the initiation of apoptosis, being a rheostat for cell fate determination. Nrf2-lncRNA levels correlated with the recurrence-free postsurgery survival rate of patients with hepatocellular carcinoma. Collectively, Nrf2-lncRNA promotes Plk2 and p21cip1 translation by competing for specific miRNAs and activating Nrf2 under surviving conditions from oxidative stress, implying that Nrf2-lncRNA serves as a fine-tuning rheostat for cell fate decision.-Joo, M. S., Shin, S.-B., Kim, E. J., Koo, J. H., Yim, H., Kim, S. G. Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21cip1.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/mortalidade , Diferenciação Celular , Meios de Cultura Livres de Soro , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Elementos Facilitadores Genéticos , Glutationa Transferase/genética , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante/sangue , RNA Longo não Codificante/fisiologia , RNA Neoplásico/sangue , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo
14.
Oncogene ; 38(14): 2595-2610, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30531839

RESUMO

The Hippo pathway controls organ size and tissue homeostasis, and its dysregulation often contributes to tumorigenesis. Extensive studies have shown that the Hippo pathway inhibits cell proliferation, and survival in a cell-autonomous manner. We examined the function of the Hippo pathway kinases LATS1/2 (large tumor suppressor 1 and 2) in cancer cells. As expected, loss of LATS1/2 promotes cancer cell growth in most cell lines. Surprisingly, however, LATS1/2 deletion inhibits the growth of murine MC38 colon cancer cells, especially under detachment conditions. This growth inhibitory effect caused by LATS1/2 deletion is due to uncontrolled activation of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), the key downstream transcriptional coactivators inhibited by LATS1/2. We identified Wnt inducible signaling pathway protein 2 (Wisp2) and coiled-coil domain containing 80 (Ccdc80) as direct targets of YAP/TAZ. Their expression is selectively induced by LATS1/2 deletion in MC38 cells. Furthermore, deletion of WISP2 and CCDC80 prevents the growth inhibitory effect of LATS1/2 loss in MC38 cells. Our study demonstrates that the function of LATS1/2 in cell growth is cell context dependent, suggesting that LATS1/2 inhibition can be a therapeutic approach for some cancer types.


Assuntos
Proliferação de Células/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Nus , Proteínas Repressoras/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Ativação Transcricional/genética
15.
Cell Metab ; 28(2): 196-206, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089241

RESUMO

Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are two homologous transcriptional coactivators that promote cell proliferation, stem cell maintenance, and tissue homeostasis. Under favorable conditions, YAP and TAZ are active to promote cell growth through a transcriptional program mediated by the TEAD family transcription factors. Given the indispensability of cellular energy and metabolites for survival and growth, YAP and TAZ are inhibited when energy level is low. Indeed, glucose, fatty acids, hormones, and other metabolic factors have been recently revealed to regulate YAP and TAZ. Conversely, YAP and TAZ are also involved in metabolism regulation, such as to promote glycolysis, lipogenesis, and glutaminolysis, suggesting YAP and TAZ as emerging nodes in coordinating nutrient availability with cell growth and tissue homeostasis. In this Review, we summarize recent findings and provide a current overview of YAP and TAZ in metabolism by focusing on the role of YAP and TAZ as integrators for metabolic cues and cell growth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Aminoácidos/metabolismo , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Fosfoproteínas/fisiologia , Animais , Processos de Crescimento Celular , Drosophila melanogaster , Homeostase , Humanos , Camundongos , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
16.
Nat Commun ; 9(1): 503, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29403003

RESUMO

Chitinase-3-like-1 (Chi3l1) is known to play a significant role in the pathogenesis of Type 2 inflammation and cancer. However, the function of Chi3l1 in T cell and its clinical implications are largely unknown. Here we show that Chi3l1 expression was increased in activated T cells, especially in Th2 cells. In addition, Chi3l1-deficient T cells are hyper-responsive to TcR stimulation and are prone to differentiating into Th1 cells. Chi3l1-deficient Th1 cells show increased expression of anti-tumor immunity genes and decreased Th1 negative regulators. Deletion of Chi3l1 in T cells in mice show reduced melanoma lung metastasis with increased IFNγ and TNFα-producing T cells in the lung. Furthermore, silencing of Chi3l1 expression in the lung using peptide-siRNA complex (dNP2-siChi3l1) efficiently inhibit lung metastasis with enhanced Th1 and CTL responses. Collectively, this study demonstrates Chi3l1 is a regulator of Th1 and CTL which could be a therapeutic target to enhance anti-tumor immunity.


Assuntos
Proteína 1 Semelhante à Quitinase-3/genética , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia , Animais , Proteína 1 Semelhante à Quitinase-3/imunologia , Interferon gama/imunologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/secundário , Camundongos , Camundongos Knockout , Terapêutica com RNAi , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Fator de Necrose Tumoral alfa/imunologia
17.
J Cell Mol Med ; 22(2): 849-860, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29077264

RESUMO

The G12 family of G protein alpha subunits has been shown to participate in the regulation of various physiological processes. However, the role of Gα12 in bone physiology has not been well described. Here, by micro-CT analysis, we discovered that Gα12-knockout mice have an osteopetrotic phenotype. Histological examination showed lower osteoclast number in femoral tissue of Gα12-knockout mice compared to wild-type mice. Additionally, in vitro osteoclastic differentiation of precursor cells with receptor activator of nuclear factor-κB ligand (RANKL) showed that Gα12 deficiency decreased the number of osteoclast generated and the bone resorption activity. The induction of nuclear factor of activated T-cell c1 (NFATc1), the key transcription factor of osteoclastogenesis, and the activation of RhoA by RANKL was also significantly suppressed by Gα12 deficiency. We further found that the RANKL induction of NFATc1 was not dependent on RhoA signalling, while osteoclast precursor migration and bone resorption required RhoA in the Gα12-mediated regulation of osteoclasts. Therefore, Gα12 plays a role in differentiation through NFATc1 and in cell migration and resorption activity through RhoA during osteoclastogenesis.


Assuntos
Fatores de Transcrição NFATC/metabolismo , Animais , Células da Medula Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese , Osteopetrose/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
18.
J Hepatol ; 68(3): 493-504, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080810

RESUMO

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) have a role in liver fibrosis. Guanine nucleotide-binding α-subunit 12 (Gα12) converges signals from G-protein-coupled receptors whose ligand levels are elevated in the environment during liver fibrosis; however, information is lacking on the effect of Gα12 on HSC trans-differentiation. This study investigated the expression of Gα12 in HSCs and the molecular basis of the effects of its expression on liver fibrosis. METHODS: Gα12 expression was assessed by immunostaining, and immunoblot analyses of mouse fibrotic liver tissues and primary HSCs. The role of Gα12 in liver fibrosis was estimated using a toxicant injury mouse model with Gα12 gene knockout and/or HSC-specific Gα12 delivery using lentiviral vectors, in addition to primary HSCs and LX-2 cells using microRNA (miR) inhibitors, overexpression vectors, or adenoviruses. miR-16, Gα12, and LC3 were also examined in samples from patients with fibrosis. RESULTS: Gα12 was overexpressed in activated HSCs and fibrotic liver, and was colocalised with desmin. In a carbon tetrachloride-induced fibrosis mouse model, Gα12 ablation prevented increases in fibrosis and liver injury. This effect was attenuated by HSC-specific lentiviral delivery of Gα12. Moreover, Gα12 activation promoted autophagy accompanying c-Jun N-terminal kinase-dependent ATG12-5 conjugation. In addition, miR-16 was found to be a direct inhibitor of the de novo synthesis of Gα12. Modulations of miR-16 altered autophagy in HSCs. In a fibrosis animal model or patients with severe fibrosis, miR-16 levels were lower than in their corresponding controls. Consistently, cirrhotic patient liver tissues showed Gα12 and LC3 upregulation in desmin-positive areas. CONCLUSIONS: miR-16 dysregulation in HSCs results in Gα12 overexpression, which activates HSCs by facilitating autophagy through ATG12-5 formation. This suggests that Gα12 and its regulatory molecules could serve as targets for the amelioration of liver fibrosis. LAY SUMMARY: Guanine nucleotide-binding α-subunit 12 (Gα12) is upregulated in activated hepatic stellate cells (HSCs) as a consequence of the dysregulation of a specific microRNA that is abundant in HSCs, facilitating the progression of liver fibrosis. This event is mediated by c-Jun N-terminal kinase-dependent ATG12-5 formation and the promotion of autophagy. We suggest that Gα12 and its associated regulators could serve as new targets in HSCs for the treatment of liver fibrosis.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática , MicroRNAs/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Regulação da Expressão Gênica , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Inibidores de Serina Proteinase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
19.
J Allergy Clin Immunol ; 141(1): 137-151, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28456618

RESUMO

BACKGROUND: Atopic dermatitis (AD) and psoriasis are the 2 most common chronic inflammatory skin diseases. There is an unmet medical need to overcome limitations for transcutaneous drug development posed by the skin barrier. OBJECTIVE: We aimed to identify a novel transdermal delivery peptide and to develop a transcutaneously applicable immunomodulatory protein for treating AD and psoriasis. METHODS: We identified and generated reporter proteins conjugated to astrotactin 1-derived peptide (AP), a novel transdermal delivery peptide of human origin, and analyzed the intracellular delivery efficiency of these proteins in mouse and human skin cells and tissues using multiphoton confocal microscopy. We also generated a recombinant therapeutic protein, AP-recombinant protein tyrosine phosphatase (rPTP), consisting of the phosphatase domain of the T-cell protein tyrosine phosphatase conjugated to AP. The immunomodulatory function of AP-rPTP was confirmed in splenocytes on cytokine stimulation and T-cell receptor stimulation. Finally, we confirmed the in vivo efficacy of AP-rPTP transdermal delivery in patients with oxazolone-induced contact hypersensitivity, ovalbumin-induced AD-like, and imiquimod-induced psoriasis-like skin inflammation models. RESULTS: AP-conjugated reporter proteins exhibited significant intracellular transduction efficacy in keratinocytes, fibroblasts, and immune cells. In addition, transcutaneous administration of AP-dTomato resulted in significant localization into the dermis and epidermis in both mouse and human skin. AP-rPTP inhibited phosphorylated signal transducer and activator of transcription (STAT) 1, STAT3, and STAT6 in splenocytes and also regulated T-cell activation and proliferation. Transcutaneous administration of AP-rPTP through the paper-patch technique significantly ameliorated skin tissue thickening, inflammation, and cytokine expression in both AD-like and psoriasis-like dermatitis models. CONCLUSION: We identified a 9-amino-acid novel transdermal delivery peptide, AP, and demonstrated its feasibility for transcutaneous biologic drug development. Moreover, AP-rPTP is a novel immunomodulatory drug candidate for human dermatitis.


Assuntos
Dermatite Atópica , Glicoproteínas , Proteínas do Tecido Nervoso , Peptídeos , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Psoríase , Proteínas Recombinantes de Fusão , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Derme/imunologia , Derme/patologia , Glicoproteínas/genética , Glicoproteínas/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Peptídeos/genética , Peptídeos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/farmacologia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/patologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Transcrição STAT/imunologia
20.
Exp Mol Med ; 49(8): e362, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28775364

RESUMO

German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.


Assuntos
Asma/imunologia , Asma/terapia , Blattellidae/imunologia , Antígeno CTLA-4/uso terapêutico , Peptídeos Penetradores de Células/uso terapêutico , Abatacepte/metabolismo , Administração Intranasal , Remodelação das Vias Aéreas/efeitos dos fármacos , Alérgenos/administração & dosagem , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA