Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127909, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951450

RESUMO

Nerve growth factor (NGF) and its receptor, tropomyosin kinase receptor kinase type A (TrkA) is emerging as an important target for Glioblastoma (GBM) treatment. TrkA is the cancer biomarker majorly involved in tumor invasion and migration into nearby normal tissue. However, currently, available Trk inhibitors exhibit many adverse effects in cancer patients, thus demanding a novel class of ligands to regulate Trk signaling. Here, we exploited the role of TrkA (NTRK1) expression from the 651 datasets of brain tumors. RNA sequence analysis identified overexpression of NTRK1 in GBM, recurrent GBM as well in Oligoastrocytoma patients. Also, TrkA expression tends to increase over the higher grades of GBM. TrkA protein targeting hydrazone derivatives, R48, R142, and R234, were designed and their mode of interaction was studied using molecular docking and dynamic simulation studies. Ligands' stability and binding assessment reveals R48, 2 2-(2-(2-hydroxy-4-nitrophenyl) hydrazineylidene)-1-phenylbutane-1,3-dione, as a potent ligand that interacts well with TrkA's hydrophobic residues, Ile, Phe, Leu, Ala, and Val. R48- TrkA exhibits stable binding potentials with an average RMSD value <0.8 nm. R48 obeyed Lipinski's rule of five and possessed the best oral bioavailability, suggesting R48 as a potential compound with drug-likeness properties. In-vitro analysis also revealed that R48 exhibited a higher cytotoxicity effect for U87 GBM cells than TMZ with the IC50 value of 68.99 µM. It showed the lowest percentage of cytotoxicity to the non-cancerous TrkA expressing MEF cells. However, further SiRNA analysis validates the non-specific binding of R48, necessitating structural alteration for the development of R48-based TrkA inhibitor for GBM therapeutics.


Assuntos
Glioblastoma , Receptor trkA , Humanos , Receptor trkA/genética , Receptor trkA/metabolismo , Simulação de Acoplamento Molecular , Recidiva Local de Neoplasia , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia
2.
Inflammopharmacology ; 31(5): 2421-2430, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37665448

RESUMO

PURPOSE: To evaluate the effect of oral magnesium sulfate (MgSO4) on the gene expression and serum levels of inflammatory cytokines including TNF-α, IL-18, IL-1ß, IL-6, and IFN-γ in patients with moderate coronary artery disease (CAD). METHODS: 60 CAD patients were selected based on angiography findings and were randomly divided into two groups that received 300 mg/day MgSO4 (n = 30) or placebo (n = 30) for 3 months. Gene expression and serum levels of inflammatory cytokines were assessed. RESULTS: After 3 months of intervention, gene expression and serum levels of IL-18 and TNF-α in the MgSO4 group were significantly less than the placebo group (P < 0.05). However, no significant difference in gene expression and serum levels of IL-1ß, IL-6, and IFN-γ was observed between the two groups (P > 0.05). In addition, within group analysis demonstrate that Mg-treatment significantly decrease serum level of TNF-α and IL-18 as compared to pretreatment. CONCLUSION: The results of our study demonstrate that 3-month magnesium sulfate administration (300 mg/day) to CAD patients could significantly decrease serum concentration and gene expression levels of IL-18 and TNF-α. Our findings support the potential beneficial effect of magnesium supplementation on alleviating CAD complications through modulating inflammatory cytokines.


Assuntos
Doença da Artéria Coronariana , Citocinas , Humanos , Interleucina-18 , Fator de Necrose Tumoral alfa , Sulfato de Magnésio/farmacologia , Sulfato de Magnésio/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Interleucina-6 , Expressão Gênica
4.
Indian J Clin Biochem ; 38(1): 59-66, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684501

RESUMO

Magnesium seems to play a role in improving cardiovascular function, but its exact mechanism is unknown. In this study, we hypothesized that magnesium could modulate the expression of genes involved in atherosclerosis. The aim of the present investigation was to evaluate the effect of magnesium sulfate on the expression of sirtuin1 (SIRT1), tumor protein p53 (TP53), and endothelial nitric oxide synthase (eNOS) genes in patients with atherosclerosis. This study was a placebo-controlled double-blind randomized clinical trial on 56 patients with angiographically proven atherosclerosis. Participants were randomly divided into two groups receiving 300 mg/day magnesium sulfate (n = 29) and placebo (n = 27) for three months (following up every month). Fasting blood samples were taken before and after the intervention and total RNA was extracted and used to evaluate the expression level of SIRT1, TP53, and eNOS genes by Real-Time PCR. The expression of eNOS gene was significantly increased (P < 0.0001) and the expression of TP53 gene was decreased (P = 0.02) in the magnesium sulfate group compared to the placebo group. But SIRT1 gene expression was not significantly different between the two groups. Our findings demonstrate that magnesium sulfate supplementation may have a protective role against the progression of atherosclerosis through upregulation of eNOS and downregulation of TP53 gene. Trial registration: This present clinical trial has been registered in the Iranian Registry of Clinical Trials (IRCT) with the registration code of "IRCT20151028024756N3", https://www.irct.ir/trial/29097?revision=114102. Registered on 16 December 2019.

5.
Mol Biol Rep ; 49(4): 2755-2763, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088375

RESUMO

BACKGROUND: Resistance to cisplatin is a major obstacle to effective treatment of bladder cancer (BC). The present study aimed to determine whether a combination of acriflavine (ACF) with cisplatin could potentiate the antitumor property of cisplatin against the BC cells. Furthermore, the molecular mechanism behind the anticancer action of ACF was considered. METHODS AND RESULTS: Two human BC cells (5637 and EJ138) contain mutated form of p53 was culture in standard condition. Cotreatment protocol (simultaneous combination of IC30 value of ACF + various dose of cisplatin for 72 h) and pretreatment protocol (pretreatment with IC15 value of ACF for 24 h + various dose of cisplatin for 48 h) was used to determine the effect of ACF on the cells' sensitivity to main drug cisplatin. To assess the mechanism of action of ACF, real-time PCR was used to evaluate mRNA levels of hypoxia-inducible factor-1α (HIF-1α), Bax, Bcl-2, topoisomerase1 (TOP1) and topoisomerase 2 (TOP2A). Combination of ACF with cisplatin either as cotreatment or opretreatment protocol could significantly reduce the IC50 values of cisplatin as compared to the IC50 of cisplatin when use as a single drug. In addition, ACF could markedly decrease mRNA expression of TOP1 and TOP2A without changing the expression of HIF-1ɑ, Bax and Bcl-2. CONCLUSIONS: Our findings indicate that combination of cisplatin with ACF was able to significantly enhance the sensitivity of BC cells to cisplatin. The antitumor activity of ACF is exerted through the downregulation of TOP1 and TOP2A genes expression. ACF may serve as an adjuvant to boost cisplatin-based chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
6.
World J Gastrointest Oncol ; 12(9): 942-956, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33005290

RESUMO

5-flurouracil (5-FU)-based chemotherapy is the main pharmacological therapy for advanced colorectal cancer (CRC). Despite significant progress in the treatment of CRC during the last decades, 5-FU drug resistance remains the most important cause of failure in CRC therapy. Resistance to 5-FU is a complex and multistep process. Different mechanisms including microsatellite instability, increased expression level of key enzyme thymidylate synthase and its polymorphism, increased level of 5-FU-activating enzymes and mutation of TP53 are proposed as the main determinants of resistance to 5-FU in CRC cells. Recently, micro-ribonucleic acids (miRNA) and their alterations were found to have a crucial role in 5-FU resistance. In this regard, the miRNA-mediated mechanisms of 5-FU drug resistance reside among the new fields of pharmacogenetics of CRC drug response that has not been completely discovered. Identification of the biological markers that are related to response to 5-FU-based chemotherapy is an emerging field of precision medicine. This approach will have an important role in defining those patients who are most likely to benefit from 5-FU-based chemotherapy in the future. Thereby, the identification of 5-FU drug resistance mechanisms is an essential step to predict and eventually overcome resistance. In the present comprehensive review, we will summarize the latest knowledge regarding the molecular determinants of response to 5-FU-based chemotherapy in CRC by emphasizing the role of miRNAs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA