Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38712159

RESUMO

The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We employed protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a supefamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains, and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.

2.
Proc Natl Acad Sci U S A ; 121(23): e2405771121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805295

RESUMO

The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin, and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We used protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU, and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a superfamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.


Assuntos
Proteínas do Capsídeo , Vírus de DNA , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Vírus de DNA/genética , Eucariotos/virologia , Eucariotos/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Modelos Moleculares , Filogenia
3.
mBio ; 15(3): e0033524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380930

RESUMO

Endosomal sorting complexes required for transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold and using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins. Several distinct groups of ESCRT systems in archaea outside of Asgard were identified, including proteins structurally similar to ESCRT-I and ESCRT-II, and several other domains involved in protein sorting in eukaryotes, suggesting an early origin of these components. Additionally, distant homologs of CdvA proteins were identified in Thermoproteales which are likely components of the uncharacterized cell division system in these archaea. We propose an evolutionary scenario for the origin of eukaryotic and Asgard ESCRT complexes from ancestral building blocks, namely, the Vps4 ATPase, ESCRT-III components, wH (winged helix-turn-helix fold) and possibly also coiled-coil, and Vps28-like domains. The last archaeal common ancestor likely encompassed a complex ESCRT system that was involved in protein sorting. Subsequent evolution involved either simplification, as in the TACK superphylum, where ESCRT was co-opted for cell division, or complexification as in Asgardarchaeota. In Asgardarchaeota, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was already established.IMPORTANCEAll eukaryotic cells possess complex intracellular membrane organization. Endosomal sorting complexes required for transport (ESCRT) play a central role in membrane remodeling which is essential for cellular functionality in eukaryotes. Recently, it has been shown that Asgard archaea, the archaeal phylum that includes the closest known relatives of eukaryotes, encode homologs of many components of the ESCRT systems. We employed protein sequence and structure comparisons to reconstruct the evolution of ESCRT systems in archaea and identified several previously unknown homologs of ESCRT subunits, some of which can be predicted to participate in cell division. The results of this reconstruction indicate that the last archaeal common ancestor already encoded a complex ESCRT system that was involved in protein sorting. In Asgard archaea, ESCRT systems evolved toward greater complexity, and in particular, the connection between ESCRT and the ubiquitin system that was previously considered a eukaryotic signature was established.


Assuntos
Archaea , Complexos Endossomais de Distribuição Requeridos para Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Filogenia , Sequência de Aminoácidos , Archaea/metabolismo , Adenosina Trifosfatases/metabolismo , Ubiquitinas/metabolismo
4.
PLoS Biol ; 21(6): e3002157, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37319262

RESUMO

Numerous, diverse plant viruses encode movement proteins (MPs) that aid the virus movement through plasmodesmata, the plant intercellular channels. MPs are essential for virus spread and propagation in distal tissues, and several unrelated MPs have been identified. The 30K superfamily of MPs (named after the molecular mass of tobacco mosaic virus MP, the classical model of plant virology) is the largest and most diverse MP variety, represented in 16 virus families, but its evolutionary origin remained obscure. Here, we show that the core structural domain of the 30K MPs is homologous to the jelly-roll domain of the capsid proteins (CPs) of small RNA and DNA viruses, in particular, those infecting plants. The closest similarity was observed between the 30K MPs and the CPs of the viruses in the families Bromoviridae and Geminiviridae. We hypothesize that the MPs evolved via duplication or horizontal acquisition of the CP gene in a virus that infected an ancestor of vascular plants, followed by neofunctionalization of one of the paralogous CPs, potentially through the acquisition of unique N- and C-terminal regions. During the subsequent coevolution of viruses with diversifying vascular plants, the 30K MP genes underwent explosive horizontal spread among emergent RNA and DNA viruses, likely permitting viruses of insects and fungi that coinfected plants to expand their host ranges, molding the contemporary plant virome.


Assuntos
Vírus de Plantas , Vírus do Mosaico do Tabaco , Proteínas do Capsídeo/genética , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Plantas/genética , RNA , Nicotiana/genética
5.
Biomolecules ; 13(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36830658

RESUMO

The International Committee on Taxonomy of Viruses (ICTV) recently accepted viriforms as a new polyphyletic category of classifiable virus-derived genetic elements, juxtaposed to the polyphyletic virus, viroid, and satellite nucleic acid categories. Viriforms are endogenized former viruses that have been exapted by their cellular hosts to fulfill functions important for the host's life cycle. While morphologically resembling virions, particles made by viriforms do not package the viriform genomes but instead transport host genetic material. Known viriforms are highly diverse: members of family Polydnaviriformidae (former Polydnaviridae) have thus far been found exclusively in the genomes of braconid and ichneumonid parasitoid wasps, whereas the completely unrelated gene transfer agents (GTAs) are widely distributed among prokaryotes. In addition, recent discoveries likely extend viriforms to mammalian genomes. Here, we briefly outline the properties of these viriform groups and the first accepted and proposed ICTV frameworks for viriform classification.


Assuntos
Polydnaviridae , Vespas , Animais , Genoma Viral , Polydnaviridae/genética , Mamíferos/genética
6.
STAR Protoc ; 4(1): 102117, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853661

RESUMO

The study of genes that evolve under conditional selection can shed light on the genomic underpinnings of adaptation, revealing epistasis and phenotypic plasticity. This protocol describes how to use the Coselens package to compare gene-level selection between two groups of samples. After installing Coselens and preparing the datasets, a typical run on a laptop takes less than 10 min. Coselens is best suited to analyze somatic mutations and data from experimental evolution, for which independently evolved samples are available. For complete details on the use and execution of this protocol, please refer to Iranzo et al. (2022).1.


Assuntos
Adaptação Fisiológica , Genômica , Mutação
7.
PLoS Biol ; 21(2): e3001922, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780432

RESUMO

A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.


Assuntos
Bacteriófagos , Vírus , Humanos , Metagenômica , Filogenia , Vírus/genética
8.
Viruses ; 14(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36146653

RESUMO

Bacteriophages play key roles in the dynamics of the human microbiome. By far the most abundant components of the human gut virome are tailed bacteriophages of the realm Duplodnaviria, in particular, crAss-like phages. However, apart from duplodnaviruses, the gut virome has not been dissected in detail. Here we report a comprehensive census of a minor component of the gut virome, the tailless bacteriophages of the realm Varidnaviria. Tailless phages are primarily represented in the gut by prophages, that are mostly integrated in genomes of Alphaproteobacteria and Verrucomicrobia and belong to the order Vinavirales, which currently consists of the families Corticoviridae and Autolykiviridae. Phylogenetic analysis of the major capsid proteins (MCP) suggests that at least three new families should be established within Vinavirales to accommodate the diversity of prophages from the human gut virome. Previously, only the MCP and packaging ATPase genes were reported as conserved core genes of Vinavirales. Here we report an extended core set of 12 proteins, including MCP, packaging ATPase, and previously undetected lysis enzymes, that are shared by most of these viruses. We further demonstrate that replication system components are frequently replaced in the genomes of Vinavirales, suggestive of selective pressure for escape from yet unknown host defenses or avoidance of incompatibility with coinfecting related viruses. The results of this analysis show that, in a sharp contrast to marine viromes, varidnaviruses are a minor component of the human gut virome. Moreover, they are primarily represented by prophages, as indicated by the analysis of the flanking genes, suggesting that there are few, if any, lytic varidnavirus infections in the gut at any given time. These findings complement the existing knowledge of the human gut virome by exploring a group of viruses that has been virtually overlooked in previous work.


Assuntos
Bacteriófagos , Vírus , Adenosina Trifosfatases/genética , Bacteriófagos/genética , Proteínas do Capsídeo/genética , Humanos , Intestinos , Filogenia , Prófagos/genética
9.
Cell Rep ; 40(8): 111272, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001960

RESUMO

Cancer driver mutations often display mutual exclusion or co-occurrence, underscoring the key role of epistasis in carcinogenesis. However, estimating the magnitude of epistasis and quantifying its effect on tumor evolution remains a challenge. We develop a method (Coselens) to quantify conditional selection on the excess of nonsynonymous substitutions in cancer genes. Coselens infers the number of drivers per gene in different partitions of a cancer genomics dataset using covariance-based mutation models and determines whether coding mutations in a gene affect selection for drivers in any other gene. Using Coselens, we identify 296 conditionally selected gene pairs across 16 cancer types in the TCGA dataset. Conditional selection affects 25%-50% of driver substitutions in tumors with >2 drivers. Conditionally co-selected genes form modular networks, whose structures challenge the traditional interpretation of within-pathway mutual exclusivity and across-pathway synergy, suggesting a more complex scenario where gene-specific across-pathway epistasis shapes differentiated cancer subtypes.


Assuntos
Biologia Computacional , Neoplasias , Epistasia Genética , Redes Reguladoras de Genes , Humanos , Mutação/genética , Neoplasias/genética , Oncogenes
10.
Phys Rev Lett ; 128(21): 218101, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687438

RESUMO

Resolution of the intrinsic conflict between the reproduction of single cells and the homeostasis of a multicellular organism is central to animal biology and has direct impact on aging and cancer. Intercellular competition is indispensable in multicellular organisms because it weeds out senescent cells, thereby increasing the organism's fitness and delaying aging. In this Letter, we describe the growth dynamics of multicellular organisms in the presence of intercellular competition and show that the lifespan of organisms can be extended and the onset of cancer can be delayed if cells alternate between competition (a fair strategy) and noncompetitive growth, or cooperation (a losing strategy). This effect recapitulates the weak form of the game-theoretic Parrondo's paradox, whereby strategies that are individually fair or losing achieve a winning outcome when alternated. We show in a population model that periodic and stochastic switching between competitive and cooperative cellular strategies substantially extends the organism lifespan and reduces cancer incidence, which cannot be achieved simply by optimizing the competitive ability of the cells. These results indicate that cells could have evolved to optimally mix competitive and cooperative strategies, and that periodic intercellular competition could potentially be exploited and tuned to delay aging.


Assuntos
Longevidade , Neoplasias , Envelhecimento , Animais
11.
Viruses ; 14(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746792

RESUMO

Alfalfa is an important perennial forage crop in Idaho supporting dairy and cattle industries that is typically grown in the same field for as many as 4 years. Alfalfa stands of different ages were subjected to screening for viruses using high-throughput sequencing and RT-PCR. The two most common viruses found were alfalfa mosaic virus and bean leafroll virus, along with Medicago sativa amalgavirus, two alphapartitiviruses, and one deltapartitivirus. Additionally, a new flavi-like virus with an unusual genome organization was discovered, dubbed Snake River alfalfa virus (SRAV). The 11,745 nt, positive-sense (+) RNA genome of SRAV encodes a single 3835 aa polyprotein with only two identifiable conserved domains, an RNA-dependent RNA polymerase (RdRP) and a predicted serine protease. Notably, unlike all +RNA virus genomes in the similar size range, the SRAV polyprotein contained no predicted helicase domain. In the RdRP phylogeny, SRAV was placed inside the flavi-like lineage as a sister clade to a branch consisting of hepaci-, and pegiviruses. To the best of our knowledge, SRAV is the first flavi-like virus identified in a plant host. Although commonly detected in alfalfa crops in southern Idaho, SRAV sequences were also amplified from thrips feeding in alfalfa stands in the area, suggesting a possible role of Frankliniella occidentalis in virus transmission.


Assuntos
Vírus de RNA , Vírus não Classificados , Animais , Bovinos , Produtos Agrícolas/genética , Vírus de DNA/genética , Medicago sativa , Poliproteínas , RNA , Vírus de RNA/genética , RNA Polimerase Dependente de RNA , Rios , Vírus não Classificados/genética
12.
Biol Direct ; 17(1): 7, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313954

RESUMO

BACKGROUND: Bacteria and archaea produce an enormous diversity of modified peptides that are involved in various forms of inter-microbial conflicts or communication. A vast class of such peptides are Ribosomally synthesized, Postranslationally modified Peptides (RiPPs), and a major group of RiPPs are graspetides, so named after ATP-grasp ligases that catalyze the formation of lactam and lactone linkages in these peptides. The diversity of graspetides, the multiple proteins encoded in the respective Biosynthetic Gene Clusters (BGCs) and their evolution have not been studied in full detail. In this work, we attempt a comprehensive analysis of the graspetide-encoding BGCs and report a variety of novel graspetide groups as well as ancillary proteins implicated in graspetide biosynthesis and expression. RESULTS: We compiled a comprehensive, manually curated set of graspetides that includes 174 families including 115 new families with distinct patterns of amino acids implicated in macrocyclization and further modification, roughly tripling the known graspetide diversity. We derived signature motifs for the leader regions of graspetide precursors that could be used to facilitate graspetide prediction. Graspetide biosynthetic gene clusters and specific precursors were identified in bacterial divisions not previously known to encode RiPPs, in particular, the parasitic and symbiotic bacteria of the Candidate phyla radiation. We identified Bacteroides-specific biosynthetic gene clusters (BGC) that include remarkable diversity of graspetides encoded in the same loci which predicted to be modified by the same ATP-grasp ligase. We studied in details evolution of recently characterized chryseoviridin BGCs and showed that duplication and horizonal gene exchange both contribute to the diversification of the graspetides during evolution. CONCLUSIONS: We demonstrate previously unsuspected diversity of graspetide sequences, even those associated with closely related ATP-grasp enzymes. Several previously unnoticed families of proteins associated with graspetide biosynthetic gene clusters are identified. The results of this work substantially expand the known diversity of RiPPs and can be harnessed to further advance approaches for their identification.


Assuntos
Família Multigênica , Peptídeos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Bactérias/genética , Peptídeos/química , Filogenia , Processamento de Proteína Pós-Traducional
13.
Nat Biotechnol ; 40(2): 194-197, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34462587

RESUMO

CRISPR-Cas13 systems have been developed for precise RNA editing, and can potentially be used therapeutically when temporary changes are desirable or when DNA editing is challenging. We have identified and characterized an ultrasmall family of Cas13b proteins-Cas13bt-that can mediate mammalian transcript knockdown. We have engineered compact variants of REPAIR and RESCUE RNA editors by functionalizing Cas13bt with adenosine and cytosine deaminase domains, and demonstrated packaging of the editors within a single adeno-associated virus.


Assuntos
Sistemas CRISPR-Cas , RNA , Adenosina/genética , Adenosina Desaminase/genética , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Mamíferos/genética , RNA/genética , Edição de RNA/genética
14.
mBio ; 12(3): e0142321, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154407

RESUMO

The catalytic subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) Nsp12 has a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain that transfers nucleoside monophosphates to the Nsp9 protein and the nascent RNA. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites, and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation in bacterial cells) Nsp12 exists in an inactive state in which NiRAN-RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or nucleoside triphosphates (NTPs) partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote the synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN-RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and the design of its inhibitors. IMPORTANCEIn vitro interrogations of the central replicative complex of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp), by structural, biochemical, and biophysical methods yielded an unprecedented windfall of information that, in turn, instructs drug development and administration, genomic surveillance, and other aspects of the evolving pandemic response. They also illuminated the vast disparity in the methods used to produce RdRp for experimental work and the hidden impact that this has on enzyme activity and research outcomes. In this report, we elucidate the positive and negative effects of codon optimization on the activity and folding of the recombinant RdRp and detail the design of a highly sensitive in vitro assay of RdRp-dependent RNA synthesis. Using this assay, we demonstrate that RdRp is allosterically activated by nontemplating phosphorylated nucleotides, including naturally occurring alarmone ppGpp and synthetic remdesivir triphosphate.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Guanosina Tetrafosfato/farmacologia , SARS-CoV-2/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Domínio Catalítico/fisiologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Humanos , Ribossomos/metabolismo , Tratamento Farmacológico da COVID-19
15.
bioRxiv ; 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33948598

RESUMO

The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), Nsp12, has a unique NiRAN domain that transfers nucleoside monophosphates to the Nsp9 protein. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation) Nsp12 exists in inactive state in which NiRAN/RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or NTPs partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN/RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically-linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and design of its inhibitors. HIGHLIGHTS: Codon-optimization of Nsp12 triggers misfolding and activity lossSlow translation, accessory Nsp7 and Nsp8 subunits, and NTPs rescue Nsp12Non-substrate nucleotides activate RNA chain synthesis, likely via NiRAN domainCrosstalk between two Nsp12 active sites that bind the same ligands.

16.
NAR Cancer ; 3(2): zcab017, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34027407

RESUMO

Cancer evolves through the accumulation of somatic mutations over time. Although several methods have been developed to characterize mutational processes in cancers, these have not been specifically designed to identify mutational patterns that predict patient prognosis. Here we present CLICnet, a method that utilizes mutational data to cluster patients by survival rate. CLICnet employs Restricted Boltzmann Machines, a type of generative neural network, which allows for the capture of complex mutational patterns associated with patient survival in different cancer types. For some cancer types, clustering produced by CLICnet also predicts benefit from anti-PD1 immune checkpoint blockade therapy, whereas for other cancer types, the mutational processes associated with survival are different from those associated with the improved anti-PD1 survival benefit. Thus, CLICnet has the ability to systematically identify and catalogue combinations of mutations that predict cancer survival, unveiling intricate associations between mutations, survival, and immunotherapy benefit.

17.
J Am Chem Soc ; 143(21): 8056-8068, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34028251

RESUMO

Among the ribosomally synthesized and post-translationally modified peptide (RiPP) natural products, "graspetides" (formerly known as microviridins) contain macrocyclic esters and amides that are formed by ATP-grasp ligase tailoring enzymes using the side chains of Asp/Glu as acceptors and Thr/Ser/Lys as donors. Graspetides exhibit diverse patterns of macrocylization and connectivities exemplified by microviridins, that have a caged tricyclic core, and thuringin and plesiocin that feature a "hairpin topology" with cross-strand ω-ester bonds. Here, we characterize chryseoviridin, a new type of multicore RiPP encoded by Chryseobacterium gregarium DS19109 (Phylum Bacteroidetes) and solve a 2.44 Å resolution crystal structure of a quaternary complex consisting of the ATP-grasp ligase CdnC bound to ADP, a conserved leader peptide and a peptide substrate. HRMS/MS analyses show that chryseoviridin contains four consecutive five- or six-residue macrocycles ending with a microviridin-like core. The crystal structure captures respective subunits of the CdnC homodimer in the apo or substrate-bound state revealing a large conformational change in the B-domain upon substrate binding. A docked model of ATP places the γ-phosphate group within 2.8 Å of the Asp acceptor residue. The orientation of the bound substrate is consistent with a model in which macrocyclization occurs in the N- to C-terminal direction for core peptides containing multiple Thr/Ser-to-Asp macrocycles. Using systematically varied sequences, we validate this model and identify two- or three-amino acid templating elements that flank the macrolactone and are required for enzyme activity in vitro. This work reveals the structural basis for ω-ester bond formation in RiPP biosynthesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Produtos Biológicos/metabolismo , Ligases/metabolismo , Peptídeos/metabolismo , Trifosfato de Adenosina/química , Amidas/química , Amidas/metabolismo , Produtos Biológicos/química , Ésteres/química , Ésteres/metabolismo , Ligases/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Conformação Molecular , Peptídeos/química , Processamento de Proteína Pós-Traducional
19.
Nat Rev Genet ; 22(4): 251-262, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33257848

RESUMO

Intratumour heterogeneity and phenotypic plasticity, sustained by a range of somatic aberrations, as well as epigenetic and metabolic adaptations, are the principal mechanisms that enable cancers to resist treatment and survive under environmental stress. A comprehensive picture of the interplay between different somatic aberrations, from point mutations to whole-genome duplications, in tumour initiation and progression is lacking. We posit that different genomic aberrations generally exhibit a temporal order, shaped by a balance between the levels of mutations and selective pressures. Repeat instability emerges first, followed by larger aberrations, with compensatory effects leading to robust tumour fitness maintained throughout the tumour progression. A better understanding of the interplay between genetic aberrations, the microenvironment, and epigenetic and metabolic cellular states is essential for early detection and prevention of cancer as well as development of efficient therapeutic strategies.


Assuntos
Adaptação Fisiológica/genética , Epigênese Genética/genética , Neoplasias/genética , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação/genética , Neoplasias/patologia
20.
Commun Biol ; 3(1): 551, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009502

RESUMO

Driver mutations (DM) are the genetic impetus for most cancers. The DM are assumed to be deleterious in species evolution, being eliminated by purifying selection unless compensated by other mutations. We present deep phylogenies for 84 cancer driver genes and investigate the prevalence of 434 DM across gene-species trees. The DM are rare in species evolution, and 181 are completely absent, validating their negative fitness effect. The DM are more common in unicellular than in multicellular eukaryotes, suggesting a link between these mutations and cell proliferation control. 18 DM appear as the ancestral state in one or more major clades, including 3 among mammals. We identify within-gene, compensatory mutations for 98 DM and infer likely interactions between the DM and compensatory sites in protein structures. These findings elucidate the evolutionary status of DM and are expected to advance the understanding of the functions and evolution of oncogenes and tumor suppressors.


Assuntos
Genes Neoplásicos/genética , Mutação/genética , Neoplasias/genética , Animais , Evolução Molecular , Genes Supressores de Tumor , Humanos , Oncogenes/genética , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA