Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Oncol ; 12: 897130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747819

RESUMO

Purpose: Intravoxel incoherent motion (IVIM) is a promising technique that can acquire perfusion information without the use of contrast agent, contrary to the more established dynamic contrast-enhanced (DCE) technique. This is of interest for treatment response monitoring, where patients can be imaged on each treatment fraction. In this study, longitudinal correlations between IVIM- and DCE parameters were assessed in prostate cancer patients receiving radiation treatment. Materials and Methods: 20 prostate cancer patients were treated on a 1.5 T MR-linac with 20 x 3 or 3.1 Gy. Weekly IVIM and DCE scans were acquired. Tumors, the peripheral zone (PZ), and the transition zone (TZ) were delineated on a T2-weighted scan acquired on the first fraction. IVIM and DCE scans were registered to this scan and the delineations were propagated. Median values from these delineations were used for further analysis. The IVIM parameters D, f, D* and the product fD* were calculated. The Tofts model was used to calculate the DCE parameters Ktrans, kep and ve. Pearson correlations were calculated for the IVIM and DCE parameters on values from the first fraction for each region of interest (ROI). For longitudinal analysis, the repeated measures correlation coefficient was used to determine correlations between IVIM and DCE parameters in each ROI. Results: When averaging over patients, an increase during treatment in all IVIM and DCE parameters was observed in all ROIs, except for D in the PZ and TZ. No significant Pearson correlations were found between any pair of IVIM and DCE parameters measured on the first fraction. Significant but low longitudinal correlations were found for some combinations of IVIM and DCE parameters in the PZ and TZ, while no significant longitudinal correlations were found in the tumor. Notably in the TZ, for both f and fD*, significant longitudinal correlations with all DCE parameters were found. Conclusions: The increase in IVIM- and DCE parameters when averaging over patients indicates a measurable response to radiation treatment with both techniques. Although low, significant longitudinal correlations were found which suggests that IVIM could potentially be used as an alternative to DCE for treatment response monitoring.

2.
J Clin Med ; 11(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35407606

RESUMO

Quantitative MRI has the potential to produce imaging biomarkers for the prediction of early response to radiotherapy treatment. In this pilot study, a potential imaging biomarker, the T1ρ relaxation time, is assessed for this purpose. A T1ρ sequence was implemented on a 1.5 T MR-linac system, a system that combines an MRI with a linear accelerator for radiation treatment. An agar phantom with concentrations of 1-4% w/w was constructed for technical validation of the sequence. Phantom images were assessed in terms of short-term repeatability and signal-to-noise ratio. Twelve rectal cancer patients, who were treated with 5 × 5 Gy, were imaged on each treatment fraction. Individual changes in the T1ρ values of the gross tumor volume (GTV) showed an increase for most patients, although a paired t-test comparing values in the GTV from the first to the last treatment fraction showed no statistically significant difference. The phantom measurements showed excellent short-term repeatability (0.5-1.5 ms), and phantom T1ρ values corresponded to the literature values. T1ρ imaging was implemented successfully on the MR-linac, with a repeatability comparable to diagnostic systems, although clinical benefit in terms of treatment response monitoring remains to be demonstrated.

3.
Front Oncol ; 11: 705964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485138

RESUMO

PURPOSE: Daily quantitative MR imaging during radiotherapy of cancer patients has become feasible with MRI systems integrated with linear accelerators (MR-linacs). Quantitative images could be used for treatment response monitoring. With intravoxel incoherent motion (IVIM) MRI, it is possible to acquire perfusion information without the use of contrast agents. In this multicenter study, daily IVIM measurements were performed in prostate cancer patients to identify changes that potentially reflect response to treatment. MATERIALS AND METHODS: Forty-three patients were included, treated with 20 fractions of 3 Gy on a 1.5 T MR-linac. IVIM measurements were performed on each treatment day. The diffusion coefficient (D), perfusion fraction (f), and pseudo-diffusion coefficient (D*) were calculated based on the median signal intensities in the non-cancerous prostate and the tumor. Repeatability coefficients (RCs) were determined based on the first two treatment fractions. Separate linear mixed-effects models were constructed for the three IVIM parameters. RESULTS: In total, 726 fractions were analyzed. Pre-treatment average values, measured on the first fraction before irradiation, were 1.46 × 10-3 mm2/s, 0.086, and 28.7 × 10-3 mm2/s in the non-cancerous prostate and 1.19 × 10-3 mm2/s, 0.088, and 28.9 × 10-3 mm2/s in the tumor, for D, f, and D*, respectively. The repeatability coefficients for D, f, and D* in the non-cancerous prostate were 0.09 × 10-3 mm2/s, 0.05, and 15.3 × 10-3 mm2/s. In the tumor, these values were 0.44 × 10-3 mm2/s, 0.16, and 76.4 × 10-3 mm2/s. The mixed effects analysis showed an increase in D of the tumors over the course of treatment, while remaining stable in the non-cancerous prostate. The f and D* increased in both the non-cancerous prostate and tumor. CONCLUSIONS: It is feasible to perform daily IVIM measurements on an MR-linac system. Although the repeatability coefficients were high, changes in IVIM perfusion parameters were measured on a group level, indicating that IVIM has potential for measuring treatment response.

4.
Eur J Cancer ; 153: 64-71, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34144436

RESUMO

Quantitative imaging biomarkers (QIBs) derived from MRI techniques have the potential to be used for the personalised treatment of cancer patients. However, large-scale data are missing to validate their added value in clinical practice. Integrated MRI-guided radiotherapy (MRIgRT) systems, such as hybrid MRI-linear accelerators, have the unique advantage that MR images can be acquired during every treatment session. This means that high-frequency imaging of QIBs becomes feasible with reduced patient burden, logistical challenges, and costs compared to extra scan sessions. A wealth of valuable data will be collected before and during treatment, creating new opportunities to advance QIB research at large. The aim of this paper is to present a roadmap towards the clinical use of QIBs on MRIgRT systems. The most important need is to gather and understand how the QIBs collected during MRIgRT correlate with clinical outcomes. As the integrated MRI scanner differs from traditional MRI scanners, technical validation is an important aspect of this roadmap. We propose to integrate technical validation with clinical trials by the addition of a quality assurance procedure at the start of a trial, the acquisition of in vivo test-retest data to assess the repeatability, as well as a comparison between QIBs from MRIgRT systems and diagnostic MRI systems to assess the reproducibility. These data can be collected with limited extra time for the patient. With integration of technical validation in clinical trials, the results of these trials derived on MRIgRT systems will also be applicable for measurements on other MRI systems.


Assuntos
Biomarcadores/metabolismo , Imageamento por Ressonância Magnética/métodos , Radioterapia (Especialidade)/métodos , Radioterapia Guiada por Imagem/métodos , Humanos
5.
Radiother Oncol ; 153: 106-113, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017604

RESUMO

BACKGROUND AND PURPOSE: Diffusion-weighted imaging (DWI) for treatment response monitoring is feasible on hybrid magnetic resonance linear accelerator (MR-linac) systems. The MRI scanner of the Elekta Unity system has an adjusted design compared to diagnostic scanners. We investigated its impact on measuring the DWI-derived apparent diffusion coefficient (ADC) regarding three aspects: the choice of b-values, the spatial variation of the ADC, and scanning during radiation treatment. The aim of this study is to give recommendations for accurate ADC measurements on Unity systems. MATERIALS AND METHODS: Signal-to-noise ratio (SNR) measurements with increasing b-values were done to determine the highest bvalue that can be measured reliably. The spatial variation of the ADC was assessed on six Unity systems with a cylindrical phantom of 40 cm diameter. The influence of gantry rotation and irradiation was investigated by acquiring DWI images before and during treatment of 11 prostate cancer patients. RESULTS: On the Unity system, a maximum b-value of 500 s/mm2 should be used for ADC quantification, as a trade-off between SNR and diffusion weighting. Accurate ADC values were obtained within 7 cm from the iso-center, while outside this region ADC values deviated more than 5%. The ADC was not influenced by the rotating linac or irradiation during treatment. CONCLUSION: We provide Unity system specific recommendations for measuring the ADC. This will increase the consistency of ADC values acquired in different centers on the Unity system, enabling large cohort studies for biomarker discovery and treatment response monitoring.


Assuntos
Imagem de Difusão por Ressonância Magnética , Aceleradores de Partículas , Humanos , Imageamento por Ressonância Magnética , Masculino , Imagens de Fantasmas , Razão Sinal-Ruído
6.
Radiother Oncol ; 133: 156-162, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30935572

RESUMO

PURPOSE: Systems for magnetic resonance (MR-) guided radiotherapy enable daily MR imaging of cancer patients during treatment, which is of interest for treatment response monitoring and biomarker discovery using quantitative MRI (qMRI). Here, the performance of a 1.5 T MR-linac regarding qMRI was assessed on phantoms. Additionally, we show the feasibility of qMRI in a prostate cancer patient on this system for the first time. MATERIALS AND METHODS: Four 1.5 T MR-linac systems from four institutes were included in this study. T1 and T2 relaxation times, and apparent diffusion coefficient (ADC) maps, as well as dynamic contrast enhanced (DCE) images were acquired. Bland-Altman statistics were used, and accuracy, repeatability, and reproducibility were determined. RESULTS: Median accuracy for T1 ranged over the four systems from 2.7 to 14.3%, for T2 from 10.4 to 14.1%, and for ADC from 1.9 to 2.7%. For DCE images, the accuracy ranged from 12.8 to 35.8% for a gadolinium concentration of 0.5 mM and deteriorated for higher concentrations. Median short-term repeatability for T1 ranged from 0.6 to 5.1%, for T2 from 0.4 to 1.2%, and for ADC from 1.3 to 2.2%. DCE acquisitions showed a coefficient of variation of 0.1-0.6% in the signal intensity. Long-term repeatability was 1.8% for T1, 1.4% for T2, 1.7% for ADC, and 17.9% for DCE. Reproducibility was 11.2% for T1, 2.9% for T2, 2.2% for ADC, and 18.4% for DCE. CONCLUSION: These results indicate that qMRI on the Unity MR-linac is feasible, accurate, and repeatable which is promising for treatment response monitoring and treatment plan adaptation based on daily qMRI.


Assuntos
Imagem de Difusão por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Neoplasias da Próstata/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Estudos de Viabilidade , Humanos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes
7.
Brachytherapy ; 18(3): 396-403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30718176

RESUMO

PURPOSE: Bi-objective treatment planning for high-dose-rate prostate brachytherapy is a novel treatment planning method with two separate objectives that represent target coverage and organ-at-risk sparing. In this study, we investigated the feasibility and plan quality of this method by means of a retrospective observer study. METHODS AND MATERIALS: Current planning sessions were recorded to configure a bi-objective optimization model and to assess its applicability to our clinical practice. Optimization software, GOMEA, was then used to automatically generate a large set of plans with different trade-offs in the two objectives for each of 18 patients treated with high-dose-rate prostate brachytherapy. From this set, five plans per patient were selected for comparison to the clinical plan in terms of satisfaction of planning criteria and in a retrospective observer study. Three brachytherapists were asked to evaluate the blinded plans and select the preferred one. RESULTS: Recordings demonstrated applicability of the bi-objective optimization model to our clinical practice. For 14/18 patients, GOMEA plans satisfied all planning criteria, compared with 4/18 clinical plans. In the observer study, in 53/54 cases, a GOMEA plan was preferred over the clinical plan. When asked for consensus among observers, this ratio was 17/18 patients. Observers highly appreciated the insight gained from comparing multiple plans with different trade-offs simultaneously. CONCLUSIONS: The bi-objective optimization model adapted well to our clinical practice. GOMEA plans were considered equal or superior to the clinical plans. In addition, presenting multiple high-quality plans provided novel insight into patient-specific trade-offs.


Assuntos
Braquiterapia/métodos , Tratamentos com Preservação do Órgão , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Órgãos em Risco , Dosagem Radioterapêutica , Estudos Retrospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA