Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 404(2-3): 179-194, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36437542

RESUMO

The cycling import receptor PEX5 and its membrane-located binding partner PEX14 are key constituents of the peroxisomal import machinery. Upon recognition of newly synthesized cargo proteins carrying a peroxisomal targeting signal type 1 (PTS1) in the cytosol, the PEX5/cargo complex docks at the peroxisomal membrane by binding to PEX14. The PEX14 N-terminal domain (NTD) recognizes (di)aromatic peptides, mostly corresponding to Wxxx(F/Y)-motifs, with nano-to micromolar affinity. Human PEX5 possesses eight of these conserved motifs distributed within its 320-residue disordered N-terminal region. Here, we combine biophysical (ITC, NMR, CD), biochemical and computational methods to characterize the recognition of these (di)aromatic peptides motifs and identify key features that are recognized by PEX14. Notably, the eight motifs present in human PEX5 exhibit distinct affinities and energetic contributions for the interaction with the PEX14 NTD. Computational docking and analysis of the interactions of the (di)aromatic motifs identify the specific amino acids features that stabilize a helical conformation of the peptide ligands and mediate interactions with PEX14 NTD. We propose a refined consensus motif ExWΦxE(F/Y)Φ for high affinity binding to the PEX14 NTD and discuss conservation of the (di)aromatic peptide recognition by PEX14 in other species.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Humanos , Ligação Proteica , Transporte Proteico , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/química , Peroxissomos/metabolismo
2.
Nat Commun ; 8: 15560, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504272

RESUMO

Sirt1 is an NAD+-dependent protein deacetylase that regulates many physiological functions, including stress resistance, adipogenesis, cell senescence and energy production. Sirt1 can be activated by energy deprivation, but the mechanism is poorly understood. Here, we report that Sirt1 is negatively regulated by ATP, which binds to the C-terminal domain (CTD) of Sirt1. ATP suppresses Sirt1 activity by impairing the CTD's ability to bind to the deacetylase domain as well as its ability to function as the substrate recruitment site. ATP, but not NAD+, causes a conformational shift to a less compact structure. Mutations that prevent ATP binding increase Sirt1's ability to promote stress resistance and inhibit adipogenesis under high-ATP conditions. Interestingly, the CTD can be attached to other proteins, thereby converting them into energy-regulated proteins. These discoveries provide insight into how extreme energy deprivation can impact Sirt1 activity and underscore the complex nature of Sirt1 structure and regulation.


Assuntos
Trifosfato de Adenosina/química , Sirtuína 1/metabolismo , Adipogenia , Animais , Sítios de Ligação , Desoxiglucose/química , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Mutação , Plasmídeos , Domínios Proteicos , Sirtuína 1/genética , Fatores de Transcrição/metabolismo
3.
Mol Cell ; 45(3): 314-29, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22325350

RESUMO

One of the earliest steps in metazoan pre-mRNA splicing involves binding of U2 snRNP auxiliary factor (U2AF) 65 KDa subunit to the polypyrimidine (Py) tract and of the 35 KDa subunit to the invariant AG dinucleotide at the intron 3' end. Here we use in vitro and in vivo depletion, as well as reconstitution assays using purified components, to identify hnRNP A1 as an RNA binding protein that allows U2AF to discriminate between pyrimidine-rich RNA sequences followed or not by a 3' splice site AG. Biochemical and NMR data indicate that hnRNP A1 forms a ternary complex with the U2AF heterodimer on AG-containing/uridine-rich RNAs, while it displaces U2AF from non-AG-containing/uridine-rich RNAs, an activity that requires the glycine-rich domain of hnRNP A1. Consistent with the functional relevance of this activity for splicing, proofreading assays reveal a role for hnRNP A1 in U2AF-mediated recruitment of U2 snRNP to the pre-mRNA.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Proteínas Nucleares/química , Sítios de Splice de RNA , Ribonucleoproteínas/química , Composição de Bases , Sequência de Bases , Extratos Celulares , Cromatografia de Afinidade , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/isolamento & purificação , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Substâncias Macromoleculares/química , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/química , Precursores de RNA/metabolismo , Splicing de RNA , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas/metabolismo , Spliceossomos/química , Fator de Processamento U2AF , Especificidade por Substrato
4.
EMBO J ; 28(6): 745-54, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19197237

RESUMO

Protein import into peroxisomes depends on a complex and dynamic network of protein-protein interactions. Pex14 is a central component of the peroxisomal import machinery and binds the soluble receptors Pex5 and Pex19, which have important function in the assembly of peroxisome matrix and membrane, respectively. We show that the N-terminal domain of Pex14, Pex14(N), adopts a three-helical fold. Pex5 and Pex19 ligand helices bind competitively to the same surface in Pex14(N) albeit with opposite directionality. The molecular recognition involves conserved aromatic side chains in the Pex5 WxxxF/Y motif and a newly identified F/YFxxxF sequence in Pex19. The Pex14-Pex5 complex structure reveals molecular details for a critical interaction in docking Pex5 to the peroxisomal membrane. We show that mutations of Pex14 residues located in the Pex5/Pex19 binding region disrupt Pex5 and/or Pex19 binding in vitro. The corresponding full-length Pex14 variants are impaired in peroxisomal membrane localisation in vivo, showing that the molecular interactions mediated by the N-terminal domain modulate peroxisomal targeting of Pex14.


Assuntos
Ligação Competitiva , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Análise Mutacional de DNA , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Ligação Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Soluções , Eletricidade Estática , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA