Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123364

RESUMO

Drug resistance in melanoma is a major hindrance in cancer therapy. Growth hormone (GH) plays a pivotal role in contributing to the resistance to chemotherapy. Knocking down or blocking the GH receptor has been shown to sensitize the tumor cells to chemotherapy. Extensive studies have demonstrated that exosomes, a subset of extracellular vesicles, play an important role in drug resistance by transferring key factors to sensitize cancer cells to chemotherapy. In this study, we explore how GH modulates exosomal cargoes from melanoma cells and their role in drug resistance. We treated the melanoma cells with GH, doxorubicin, and the GHR antagonist, pegvisomant, and analyzed the exosomes released. Additionally, we administered these exosomes to the recipient cells. The GH-treated melanoma cells released exosomes with elevated levels of ABC transporters (ABCC1 and ABCB1), N-cadherin, and MMP2, enhancing drug resistance and migration in the recipient cells. GHR antagonism reduced these exosomal levels, restoring drug sensitivity and attenuating migration. Overall, our findings highlight a novel role of GH in modulating exosomal cargoes that drive chemoresistance and metastasis in melanoma. This understanding provides insights into the mechanisms of GH in melanoma chemoresistance and suggests GHR antagonism as a potential therapy to overcome chemoresistance in melanoma treatment.

2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000545

RESUMO

Chemotherapy treatment against pancreatic ductal adenocarcinoma (PDAC) is thwarted by tumoral activation of multiple therapy resistance pathways. The growth hormone (GH)-GH receptor (GHR) pair is a covert driver of multimodal therapy resistance in cancer and is overexpressed in PDAC tumors, yet the therapeutic potential of targeting the same has not been explored. Here, we report that GHR expression is a negative prognostic factor in patients with PDAC. Combinations of gemcitabine with different GHR antagonists (GHRAs) markedly improve therapeutic outcomes in nude mice xenografts. Employing cultured cells, mouse xenografts, and analyses of the human PDAC transcriptome, we identified that attenuation of the multidrug transporter and epithelial-to-mesenchymal transition programs in the tumors underlie the observed augmentation of chemotherapy efficacy by GHRAs. Moreover, in human PDAC patients, GHR expression strongly correlates with a gene signature of tumor promotion and immune evasion, which corroborate with that in syngeneic tumors in wild-type vs. GH transgenic mice. Overall, we found that GH action in PDAC promoted a therapy-refractory gene signature in vivo, which can be effectively attenuated by GHR antagonism. Our results collectively present a proof of concept toward considering GHR antagonists to improve chemotherapeutic outcomes in the highly chemoresistant PDAC.


Assuntos
Carcinoma Ductal Pancreático , Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Receptores da Somatotropina , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Receptores da Somatotropina/metabolismo , Receptores da Somatotropina/antagonistas & inibidores , Receptores da Somatotropina/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Camundongos Nus , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino
3.
Med ; 5(7): 816-825.e4, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38677286

RESUMO

BACKGROUND: Human subjects with generalized growth hormone (GH) insensitivity due to GH receptor deficiency (GHRD)/Laron syndrome display a very low incidence of insulin resistance, diabetes, and cancer, as well as delayed age-related cognitive decline. However, the risk of cardiovascular disease (CVD) in these subjects is poorly understood. Here, we have assessed cardiovascular function, damage, and risk factors in GHRD subjects and their relatives. METHODS: We measured markers of CVD in two phases: one in a cohort of 30 individuals (GHRD = 16, control relatives = 14) brought to USC (in Los Angeles, CA) and one in a cohort including additional individuals examined in Ecuador (where the subjects live) for a total of 44 individuals (GHRD = 21, control relatives = 23). Data were collected on GHRD and control groups living in similar geographical locations and sharing comparable environmental and socio-economic circumstances. RESULTS: Compared to controls, GHRD subjects displayed lower serum glucose, insulin, blood pressure, smaller cardiac dimensions, similar pulse wave velocity, lower carotid artery intima-media thickness, lower creatinine, and a non-significant but major reduction in the portion of subjects with carotid atherosclerotic plaques (7% GHRDs vs. 36%, Controls p = 0.1333) despite elevated low-density lipoprotein cholesterol levels. CONCLUSION: The current study indicates that individuals with GHRD have normal or improved levels of cardiovascular disease risk factors as compared to their relatives. FUNDING: This study was funded in part by NIH/NIA grant P01 AG034906 to V.D.L.


Assuntos
Doenças Cardiovasculares , Fatores de Risco de Doenças Cardíacas , Síndrome de Laron , Humanos , Masculino , Feminino , Adulto , Doenças Cardiovasculares/epidemiologia , Síndrome de Laron/genética , Pessoa de Meia-Idade , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/deficiência , Espessura Intima-Media Carotídea , Equador/epidemiologia , Receptores da Somatotropina/genética , Receptores da Somatotropina/deficiência , Análise de Onda de Pulso , Fatores de Risco , Glicemia/metabolismo , Glicemia/análise , Pressão Sanguínea , Estudos de Casos e Controles
4.
Arch. endocrinol. metab. (Online) ; 63(6): 557-567, Nov.-Dec. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055021

RESUMO

ABSTRACT In order to provide new insights into the various activities of GH in specific tissues, recent advances have allowed for the generation of tissue-specific GHR knockout mice. To date, 21 distinct tissue-specific mouse lines have been created and reported in 28 publications. Targeted tissues include liver, muscle, fat, brain, bone, heart, intestine, macrophage, pancreatic beta cells, hematopoietic stem cells, and multi-tissue "global". In this review, we provide a brief history and description of the 21 tissue-specific GHR knockout mouse lines. Arch Endocrinol Metab. 2019;63(6):557-67


Assuntos
Animais , Ratos , Receptores da Somatotropina/fisiologia , Hormônio do Crescimento/fisiologia , Transdução de Sinais , Camundongos Knockout , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA