Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
ALTEX ; 40(2): 314­336, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36044561

RESUMO

Immune responses are heavily involved in the regulation and pathogenesis of human diseases, including infectious diseases, inflammatory and autoimmune conditions, cancer, neurological disorders, and cardiometabolic syndromes. The immune system is considered a double-edged sword serving as a powerful host defense mechanism against infection and cancerous cells and causing detrimental tissue damage when the immune response is exaggerated or uncontrollable. One of the challenges in studying the efficacy and toxicity of drugs that target or modulate the immune system is the lack of suitable preclinical human models that are predictive of human response. Recent advancements in human microphysiological systems (MPS) have provided a promising in vitro platform to evaluate the response of immune organs ex vivo, to investigate the interaction of immune cells with non-lymphoid tissue cells, and to reduce the reliance on animals in preclinical studies. The development, regulation, trafficking, and responses of immune cells have been extensively studied in preclinical animal models and clinically, providing a wealth of knowledge by which to evaluate new in vitro models. Therefore, the application of immunocompetent MPS in drug discovery and development should first verify that the immune response in an MPS model recapitulates the complexity of the human immune physiology. This manuscript reviews biological functions of immune organ systems and tissue-resident immune cells and discusses contexts-of-use for commonly used immunocompetent and immune organ MPS models. Current perspective and recommendations are provided to guide the continued development of immune organ and immunocompetent MPS models and their application in drug discovery and development.

2.
J Thromb Haemost ; 20(5): 1182-1192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35158413

RESUMO

BACKGROUND: The blood coagulation factor fibrin(ogen) can modulate inflammation by altering leukocyte activity. Analyses of fibrin(ogen)-mediated proinflammatory activity have largely focused on leukocyte integrin binding activity revealed by conversion of fibrinogen to a stabilized fibrin polymer by blood coagulation enzymes. In addition to coagulation enzymes, fibrinogen is a substrate for tissue transglutaminase-2 (TG2), a widely expressed enzyme that produces unique fibrinogen Aα-γ chain cross-linked products. OBJECTIVES: We tested the hypothesis that TG2 dependent cross-linking alters the proinflammatory activity of surface-adhered fibrinogen. METHODS: Mouse bone marrow-derived macrophages (BMDMs) were cultured on tissue culture plates coated with fibrinogen or TG2-cross-linked fibrinogen (10 µg/ml) and then stimulated with lipopolysaccharide (LPS, 1 ng/ml) or vehicle for various times. RESULTS: In the absence of LPS stimulation, TG2-cross-linked fibrin(ogen) enhanced inflammatory gene induction (e.g., Tnfα) compared with unmodified fibrinogen. LPS stimulation induced mitogen-activated protein kinase phosphorylation, IκBα degradation, and expression of proinflammatory cytokines (e.g., tumor necrosis factor α) within 60 min. This initial cellular activation was unaffected by unmodified or TG2-cross-linked fibrinogen. In contrast, LPS induction of interleukin-10 mRNA and protein and STAT3 phosphorylation was selectively attenuated by TG2-cross-linked fibrinogen, which was associated with enhanced proinflammatory cytokine secretion by LPS-stimulated BMDMs at later time points (6 and 24 h). CONCLUSIONS: The results indicate that atypical cross-linking by TG2 imparts unique proinflammatory activity to surface-adhered fibrinogen. The results suggest a novel coagulation-independent mechanism controlling fibrinogen-directed macrophage activation.


Assuntos
Lipopolissacarídeos , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Transglutaminases/genética , Transglutaminases/metabolismo , Fator de Necrose Tumoral alfa
3.
Toxicol In Vitro ; 70: 105012, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33049313

RESUMO

Alveolar type II (ATII) epithelial cells contain lamellar bodies (LBs) which synthesize and store lung surfactants. In animals, the inhibition or knockout of leucine-rich repeat kinase 2 (LRRK2) causes abnormal enlargement of LBs in ATII cells. This effect of LRRK2 inhibition in lung is largely accepted as being mediated directly through blocking of the kinase function; however, downstream consequences in the lung remain unknown. In this work we established an in vitro alveolar epithelial cell (AEC) model that recapitulates the in vivo phenotype of ATII cells and developed an assay to quantify changes in LB size in response to LRRK2 inhibitors. Culture of primary human AECs at the air-liquid interface on matrigel and collagen-coated transwell inserts in the presence of growth factors promoted the LB formation and apical microvilli and induced expression of LRRK2 and ATII cell markers. Treatment with a selective LRRK2 inhibitor resulted in pharmacological reduction of phospho-LRRK2 and a significant increase in LB size; effects previously reported in lungs of non-human primates treated with LRRK2 inhibitor. In summary, our human in vitro AEC model recapitulates the abnormal lung findings observed in LRRK2-perturbed animals and holds the potential for expanding current understanding of LRRK2 function in the lung.


Assuntos
Células Epiteliais Alveolares/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Modelos Biológicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/ultraestrutura , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo
4.
Toxicol Sci ; 162(2): 396-405, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228388

RESUMO

Tissue factor (TF) is the primary activator of the blood coagulation cascade. Liver parenchymal cells (ie, hepatocytes) express TF in a molecular state that lacks procoagulant activity. Hepatocyte apoptosis is an important feature of acute and chronic liver diseases, and Fas-induced apoptosis increases hepatocyte TF procoagulant activity in vitro. We determined the impact of a pan-caspase inhibitor, IDN-7314, on hepatocyte TF activity in vitro and TF-mediated coagulation in vivo. Treatment of primary mouse hepatocytes with the Fas death receptor ligand (Jo2, 0.5 µg/ml) for 8 h increased hepatocyte TF procoagulant activity and caused release of TF-positive microvesicles. Pretreatment with 100 nM IDN-7314 abolished Jo2-induced caspase-3/7 activity and significantly reduced hepatocyte TF procoagulant activity and release of TF-positive microvesicles. Treatment of wild-type C57BL/6 mice with a sublethal dose of Jo2 (0.35 mg/kg) for 4.5 h increased coagulation, measured by a significant increase in plasma thrombin-antithrombin and TF-positive microvesicles. Total plasma microvesicle-associated TF activity was reduced in mice lacking hepatocyte TF; suggesting TF-positive microvesicles are released from the apoptotic liver. Fibrin(ogen) deposition increased in livers of Jo2-treated wild-type mice and colocalized primarily with cleaved caspase-3-positive hepatocytes. Pretreatment with IDN-7314 reduced caspase-3 activation, prevented the procoagulant changes in Jo2-treated mice, and reduced hepatocellular injury. Overall, the results indicate a central role for caspase activity in TF-mediated activation of coagulation following apoptotic liver injury. Moreover, the results suggest that liver-selective caspase inhibition may be a putative strategy to limit procoagulant and prothrombotic changes in patients with chronic liver disease.


Assuntos
Apoptose/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/irrigação sanguínea , Tromboplastina/metabolismo , Animais , Caspase 3/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/patologia , Cultura Primária de Células , Receptor fas/agonistas
5.
J Clin Invest ; 127(8): 3152-3166, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28737512

RESUMO

Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390-396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMß2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390-396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.


Assuntos
Fibrina/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Trombina/metabolismo , Tecido Adiposo/metabolismo , Adiposidade , Motivos de Aminoácidos , Animais , Glicemia/metabolismo , Composição Corporal , Peso Corporal , Coagulantes/farmacologia , Dabigatrana/farmacologia , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Feminino , Genótipo , Homozigoto , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Aumento de Peso
6.
J Hepatol ; 66(4): 787-797, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27965156

RESUMO

BACKGROUND & AIMS: Acetaminophen (APAP)-induced liver injury is coupled with activation of the blood coagulation cascade and fibrin(ogen) accumulation within APAP-injured livers of experimental mice. We sought to define the role of fibrin(ogen) deposition in APAP-induced liver injury and repair. METHODS: Wild-type, fibrinogen-deficient mice, mutant mice with fibrin(ogen) incapable of binding leukocyte αMß2 integrin (Fibγ390-396A mice) and matrix metalloproteinase 12 (Mmp12)-deficient mice were fasted, injected with 300mg/kg APAP i.p. and evaluated at a range of time-points. Plasma and liver tissue were analyzed. Rescue of Fibγ390-396A mice was carried out with exogenous Mmp12. To examine the effect of the allosteric leukocyte integrin αMß2 activator leukadherin-1 (LA-1), APAP-treated mice were injected with LA-1. RESULTS: In wild-type mice, APAP overdose increased intrahepatic levels of high molecular weight cross-linked fibrin(ogen). Anticoagulation reduced early APAP hepatotoxicity (6h), but increased hepatic injury at 24h, implying a protective role for coagulation at the onset of repair. Complete fibrin(ogen) deficiency delayed liver repair after APAP overdose, evidenced by a reduction of proliferating hepatocytes (24h) and unresolved hepatocellular necrosis (48 and 72h). Fibγ390-396A mice had decreased hepatocyte proliferation and increased multiple indices of liver injury, suggesting a mechanism related to fibrin(ogen)-leukocyte interaction. Induction of Mmp12, was dramatically reduced in APAP-treated Fibγ390-396A mice. Mice lacking Mmp12 displayed exacerbated APAP-induced liver injury, resembling Fibγ390-396A mice. In contrast, administration of LA-1 enhanced hepatic Mmp12 mRNA and reduced necrosis in APAP-treated mice. Further, administration of recombinant Mmp12 protein to APAP-treated Fibγ390-396A mice restored hepatocyte proliferation. CONCLUSIONS: These studies highlight a novel pathway of liver repair after APAP overdose, mediated by fibrin(ogen)-αMß2 integrin engagement, and demonstrate a protective role of Mmp12 expression after APAP overdose. LAY SUMMARY: Acetaminophen overdose leads to activation of coagulation cascade and deposition of high molecular weight cross-linked fibrin(ogen) species in the liver. Fibrin(ogen) is required for stimulating liver repair after acetaminophen overdose. The mechanism whereby fibrin(ogen) drives liver repair after acetaminophen overdose requires engagement of leukocyte αMß2 integrin and subsequent induction of matrix metalloproteinase 12.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Antígeno de Macrófago 1/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Acetaminofen/toxicidade , Afibrinogenemia/genética , Afibrinogenemia/metabolismo , Animais , Antitrombinas/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dabigatrana/farmacologia , Feminino , Fibrina/deficiência , Fibrina/genética , Fibrinogênio/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 12 da Matriz/deficiência , Metaloproteinase 12 da Matriz/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes
7.
Toxicology ; 365: 9-16, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475285

RESUMO

Emerging evidence supports a protective effect of platelets in experimental cholestatic liver injury and cholangiofibrosis. Coagulation-mediated platelet activation has been shown to inhibit experimental chronic cholestatic liver necrosis and biliary fibrosis. This occurs through thrombin-mediated activation of protease activated receptor-4 (PAR-4) in mice. However, it is not known whether other pathways of platelet activation, such as adenosine diphosphate (ADP)-mediated receptor P2Y12 activation is also protective. We tested the hypothesis that inhibition of P2Y12-mediated platelet activation exacerbates hepatic injury and cholangiofibrosis, and examined the impact of P2Y12 inhibition in both the presence and absence of PAR-4. Treatment of wild-type mice with the P2Y12 receptor antagonist clopidogrel increased biliary hyperplasia and cholangiofibrosis in wild-type mice exposed to the xenobiotic alpha-naphthylisothiocyanate (ANIT) for 4 weeks compared to vehicle-treated mice exposed to ANIT. Interestingly, this effect of clopidogrel occurred without a corresponding increase in hepatocellular necrosis. Whereas biliary hyperplasia and cholangiofibrosis were increased in PAR-4(-/-) mice, clopidogrel treatment failed to further increase these pathologies in PAR-4(-/-) mice. The results indicate that inhibition of receptor P2Y12-mediated platelet activation exacerbates bile duct fibrosis in ANIT-exposed mice, independent of hepatocellular necrosis. Moreover, the lack of an added effect of clopidogrel administration on the exaggerated pathology in ANIT-exposed PAR-4(-/-) mice reinforces the prevailing importance of coagulation-mediated platelet activation in limiting this unique liver pathology.


Assuntos
Colestase/patologia , Cirrose Hepática/patologia , Ativação Plaquetária/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Ativados por Proteinase/antagonistas & inibidores , Ticlopidina/análogos & derivados , 1-Naftilisotiocianato , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/induzido quimicamente , Clopidogrel , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Ativados por Proteinase/metabolismo , Serotonina/sangue , Ticlopidina/farmacologia , Xenobióticos
8.
PLoS One ; 10(9): e0139270, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26422241

RESUMO

Hypoxia is a state of decreased oxygen reaching the tissues of the body. During prenatal development, the fetus experiences localized occurrences of hypoxia that are essential for proper organogenesis and survival. The response to decreased oxygen availability is primarily regulated by hypoxia-inducible factors (HIFs), a family of transcription factors that modulate the expression of key genes involved in glycolysis, angiogenesis, and erythropoiesis. HIF-1α and HIF-2α, two key isoforms, are important in embryonic development, and likely are involved in lung morphogenesis. We have recently shown that the inducible loss of Hif-1α in lung epithelium starting at E4.5 leads to death within an hour of parturition, with symptoms similar to neonatal respiratory distress syndrome (RDS). In addition to Hif-1α, Hif-2α is also expressed in the developing lung, although the overlapping roles of Hif-1α and Hif-2α in this context are not fully understood. To further investigate the independent role of Hif-2α in lung epithelium and its ability to alter Hif-1α-mediated lung maturation, we generated two additional lung-specific inducible Hif-α knockout models (Hif-2α and Hif-1α+Hif-2α). The intrauterine loss of Hif-2α in the lungs does not lead to decreased viability or observable phenotypic changes in the lung. More interestingly, survivability observed after the loss of both Hif-1α and Hif-2α suggests that the loss of Hif-2α is capable of rescuing the neonatal RDS phenotype seen in Hif-1α-deficient pups. Microarray analyses of lung tissue from these three genotypes identified several factors, such as Scd1, Retlnγ, and Il-1r2, which are differentially regulated by the two HIF-α isoforms. Moreover, network analysis suggests that modulation of hormone-mediated, NF-κB, C/EBPα, and c-MYC signaling are central to HIF-mediated changes in lung development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Deleção de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Fenótipo , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Animais , Animais Recém-Nascidos , Redes Reguladoras de Genes , Genótipo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia , Transdução de Sinais , Análise de Sobrevida , Transcrição Gênica
9.
Toxicol Sci ; 141(2): 515-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25055964

RESUMO

Epidemiological studies suggest that exposure to environmental chemicals increases the risk of developing autoimmune liver disease. However, the identity of specific chemical perpetrators and the mechanisms whereby environmental chemicals modify liver disease is unclear. Previous studies link exposure to trichloroethylene (TCE) with the development of autoimmune liver disease and exacerbation of autoimmunity in lupus-prone MRL mice. In this study, we utilized NOD.c3c4 mice, which spontaneously develop autoimmune cholangitis bearing resemblance to some features of primary biliary cirrhosis. Nine-week-old female NOD.c3c4 mice were given TCE (0.5 mg/ml) or its vehicle (1% Cremophor-EL) in drinking water for 4 weeks. TCE had little effect on clinical chemistry, biliary cyst formation, or hepatic CD3+ T-cell accumulation. Hepatic microarray profiling revealed a dramatic suppression of early growth response 1 (EGR1) mRNA in livers of TCE-treated mice, which was verified by qPCR and immunohistochemical staining. Consistent with a reported link between reduced EGR1 expression and liver fibrosis, TCE increased hepatic type I collagen (COL1A1) mRNA and protein levels in livers of NOD.c3c4 mice. In contrast, TCE did not increase COL1A1 expression in NOD.ShiLtJ mice, which do not develop autoimmune cholangitis. These results suggest that in the context of concurrent autoimmune liver disease with a genetic basis, modification of hepatic gene expression by TCE may increase profibrogenic signaling in the liver. Moreover, these studies suggest that NOD.c3c4 mice may be a novel model to study gene-environment interactions critical for the development of autoimmune liver disease.


Assuntos
Doenças Autoimunes/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Colangite/genética , Cirrose Hepática Biliar/genética , Fígado/metabolismo , Toxicogenética/métodos , Tricloroetileno , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colangite/imunologia , Colangite/metabolismo , Colangite/patologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Interação Gene-Ambiente , Fígado/imunologia , Fígado/patologia , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/imunologia , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Camundongos Endogâmicos NOD , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo
10.
Toxicol Sci ; 141(2): 453-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25015658

RESUMO

Hepatocyte (HPC) apoptosis occurs in association with hepatotoxic responses and chronic liver disease, and is coupled to activation of the blood coagulation cascade. HPCs have been shown to express tissue factor (TF), the primary activator of blood coagulation, in a form that lacks procoagulant activity. In this study, we determined the effect of inducing HPC apoptosis on the procoagulant activity of TF. Treatment of primary mouse HPCs with the Fas death receptor agonist (anti-CD95 antibody, Jo2) triggered apoptosis as shown by cleavage of caspase-3, increased caspase-3 proteolytic activity, and cell surface exposure of phosphatidylserine (PS). Jo2-induced apoptosis significantly increased TF-dependent factor Xa generation by HPCs. Moreover, Jo2 treatment was associated with increased levels of microparticle-associated TF procoagulant activity in the culture medium. Pretreatment with a caspase-3 inhibitor significantly reduced Jo2-induced HPC TF activity and prevented the increase in microparticle-associated TF procoagulant activity. Application of the high-affinity PS-binding protein lactadherin inhibited TF-dependent factor Xa generation by Jo2-treated HPCs and dramatically reduced microparticle-associated TF procoagulant activity. Treatment of wild-type mice with a sublethal dose of Jo2 was associated with a robust increase in the activation of coagulation as measured by plasma thrombin-antithrombin (TAT) levels; whereas mice with liver-specific TF deficiency had significantly lower TAT levels. Overall, the results indicate that Fas-initiated, caspase-3-dependent HPC apoptosis increases TF procoagulant activity through a mechanism involving PS externalization. This suggests that activation of liver TF likely contributes to the procoagulant state associated with HPC apoptosis in liver toxicity and disease.


Assuntos
Apoptose , Coagulação Sanguínea , Hepatócitos/metabolismo , Tromboplastina/metabolismo , Receptor fas/metabolismo , Animais , Anticorpos/farmacologia , Antitrombina III/metabolismo , Apoptose/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Micropartículas Derivadas de Células/metabolismo , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeo Hidrolases/metabolismo , Fosfatidilserinas/metabolismo , Transdução de Sinais , Tromboplastina/deficiência , Tromboplastina/genética , Fatores de Tempo , Receptor fas/antagonistas & inibidores , Receptor fas/imunologia
11.
Toxicol Appl Pharmacol ; 262(2): 124-38, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22561333

RESUMO

Continuous exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal tumors in mice but not rats. Concentration-dependent gene expression effects were evaluated in female F344 rat duodenal and jejunal epithelia following 7 and 90 days of exposure to 0.3-520 mg/L (as sodium dichromate dihydrate, SDD) in drinking water. Whole-genome microarrays identified 3269 and 1815 duodenal, and 4557 and 1534 jejunal differentially expressed genes at 8 and 91 days, respectively, with significant overlaps between the intestinal segments. Functional annotation identified gene expression changes associated with oxidative stress, cell cycle, cell death, and immune response that were consistent with reported changes in redox status and histopathology. Comparative analysis with B6C3F1 mouse data from a similarly designed study identified 2790 differentially expressed rat orthologs in the duodenum compared to 5013 mouse orthologs at day 8, and only 1504 rat and 3484 mouse orthologs at day 91. Automated dose-response modeling resulted in similar median EC50s in the rodent duodenal and jejunal mucosae. Comparative examination of differentially expressed genes also identified divergently regulated orthologs. Comparable numbers of differentially expressed genes were observed at equivalent Cr concentrations (µg Cr/g duodenum). However, mice accumulated higher Cr levels than rats at ≥ 170 mg/L SDD, resulting in a ~2-fold increase in the number of differentially expressed genes. These qualitative and quantitative differences in differential gene expression, which correlate with differences in tissue dose, likely contribute to the disparate intestinal tumor outcomes.


Assuntos
Carcinógenos Ambientais/toxicidade , Cromo/toxicidade , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/genética , Intestino Delgado/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , RNA/química , RNA/genética , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
12.
Toxicol Appl Pharmacol ; 259(1): 13-26, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22155349

RESUMO

Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90days of exposure to 0, 0.3, 4, 14, 60, 170 or 520mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91. Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose-response modeling identified >80% of the differentially expressed genes exhibited sigmoidal dose-response curves with EC(50) values ranging from 10 to 100mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC(50) values <10mg/L SDD, 3 of which were regulated by Nrf2, suggesting oxidative stress in response to SDD at low concentrations. Analyses of differentially expressed genes identified over-represented functions associated with oxidative stress, cell cycle, lipid metabolism, and immune responses consistent with the reported effects on redox status and histopathology at corresponding SDD drinking water concentrations. Collectively, these data are consistent with a mode of action involving oxidative stress and cytotoxicity as early key events. This suggests that the tumorigenic effects of chronic Cr(VI) oral exposure likely require chronic tissue damage and compensatory epithelial cell proliferation.


Assuntos
Cromo/toxicidade , Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Água Potável/química , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Duodeno/patologia , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/patologia , Camundongos , Camundongos Endogâmicos , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
13.
Toxicol Sci ; 123(1): 58-70, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21712504

RESUMO

Chronic ingestion of high concentrations of hexavalent chromium [Cr(VI)] in drinking water induces intestinal tumors in mice. To investigate the mode of action (MOA) underlying these tumors, a 90-day drinking water study was conducted using similar exposure conditions as in a previous cancer bioassay, as well as lower (heretofore unexamined) drinking water concentrations. Tissue samples were collected in mice exposed for 7 or 90 days and subjected to histopathological, biochemical, toxicogenomic, and toxicokinetic analyses. Described herein are the results of toxicokinetic, biochemical, and pathological findings. Following 90 days of exposure to 0.3-520 mg/l of sodium dichromate dihydrate (SDD), total chromium concentrations in the duodenum were significantly elevated at ≥ 14 mg/l. At these concentrations, significant decreases in the reduced-to-oxidized glutathione ratio (GSH/GSSG) were observed. Beginning at 60 mg/l, intestinal lesions were observed including villous cytoplasmic vacuolization. Atrophy, apoptosis, and crypt hyperplasia were evident at ≥ 170 mg/l. Protein carbonyls were elevated at concentrations ≥ 4 mg/l SDD, whereas oxidative DNA damage, as assessed by 8-hydroxydeoxyguanosine, was not increased in any treatment group. Significant decreases in the GSH/GSSG ratio and similar histopathological lesions as observed in the duodenum were also observed in the jejunum following 90 days of exposure. Cytokine levels (e.g., interleukin-1ß) were generally depressed or unaltered at the termination of the study. Overall, the data suggest that Cr(VI) in drinking water can induce oxidative stress, villous cytotoxicity, and crypt hyperplasia in the mouse intestine and may underlie the MOA of intestinal carcinogenesis in mice.


Assuntos
Carcinógenos Ambientais/toxicidade , Cromatos/toxicidade , Cromo/toxicidade , Focos de Criptas Aberrantes/induzido quimicamente , Focos de Criptas Aberrantes/metabolismo , Focos de Criptas Aberrantes/patologia , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Testes de Carcinogenicidade , Carcinógenos Ambientais/farmacocinética , Cromatos/farmacocinética , Cromo/farmacocinética , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Dano ao DNA , Água Potável , Feminino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos , Camundongos Endogâmicos , Estresse Oxidativo/efeitos dos fármacos , Medição de Risco
14.
J Biomed Sci ; 16: 5, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19272169

RESUMO

We previously demonstrated that alpha3beta1 integrins are essential to hepatocyte growth factor (HGF)-independent branching tubulogenesis in Mardin-Darby Canine Kidney (MDCK) cells. However, the involvement of integrin downstream signaling molecules remains unclear. In the present study, we successfully isolated cell lines possessing different tubulogenic potentials from the MDCK cells; cyst clones (CA4, CA6) forming cystic structures when cultured in 0.3% type I collagen gel and mass clones (M610, M611, M612) forming aggregated masses. Cyst clones maintained cystic structure in 0.1% collagen gel, whereas mass clones spontaneously developed into tubules. Both clones exhibited various morphologies when cultured on a dish: cyst clones formed aggregated islands, while mass clones were more scattered and exhibited higher migration capacity. Among several focal adhesion machinery proteins examined, only the expression and phosphorylation level of focal adhesion kinase (FAK) in mass clones was higher than in cyst clones, while other proteins showed no obvious differences. However, overexpression of wild type FAK in CA6 cells did not facilitate branching tubule formation in 0.1% collagen gel. Targeted decrease in the expression level of FAK in M610 cells with the application of antisense cDNA resulted in a marked reduction of branching tubule formation in 0.1% collagen gel and showed a down-regulation of fibronectin assembly, which is known to promote tubulogenesis. In contrast, overexpression of wild type FAK in CA6 cells had no effect on fibronectin assembly. Taken together, our data demonstrates that FAK is required, but not sufficient for HGF-independent branching tubulogenesis in MDCK cells.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Túbulos Renais/citologia , Túbulos Renais/crescimento & desenvolvimento , Animais , Linhagem Celular , Movimento Celular/fisiologia , Forma Celular , Colágeno/metabolismo , Cães , Proteína-Tirosina Quinases de Adesão Focal/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Túbulos Renais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA