Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751494

RESUMO

Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels.


Assuntos
Osso e Ossos/química , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fósforo na Dieta , Animais , Fósforo na Dieta/análise , Fósforo na Dieta/farmacologia , Peixe-Zebra
2.
Int J Vitam Nutr Res ; 83(4): 238-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25008014

RESUMO

In this study the effect of increasing dietary alpha tocopherol on vitamin E tissue concentrations, lipid peroxidation (malondialdehyde), antioxidant enzymes, and fatty acid composition has been investigated in farmed Atlantic salmon. To this end fish (initial body weight ~ 193 g, n = 70 per group) were fed diets based on fish oil (27.5 %), fish meal (15.0 %), wheat gluten (20.6 %), and soy protein concentrate (24.0 %) for 14 weeks. Diets were supplemented with 0 (negative control), 150, and 400 mg/kg vitamin E as all-rac alpha-tocopheryl acetate. Dietary vitamin E did not affect feed conversion efficiency ratio but significantly (p < 0.05) increased alpha-tocopherol concentrations in salmon plasma, liver, and fillet (n = 8 per group each). The increase in fillet alpha-tocopherol was accompanied by a considerable decrease (p < 0.01) in malondialdehyde concentrations at the higher supplementation level. Furthermore, we observed an antagonistic interaction between alpha- and gamma-tocopherol in plasma at the highest supplementation level, since high dietary alpha-tocopherol reduced plasma gamma-tocopherol concentrations. Liver antioxidant enzymes, including glutathione peroxidase and superoxide dismutase, remained largely unchanged in response to dietary alpha-tocopherol. Dietary alpha-tocopherol did not affect eicosapentaenoic acid and docosahexaenoic acid concentrations in salmon fillet. Present data suggest that alpha-tocopherol supplementations beyond dietary recommendations may further improve flesh quality and nutritional value of Atlantic salmon fillet as far as malondialdehyde and vitamin E concentrations are concerned.


Assuntos
Antioxidantes/análise , Dieta/veterinária , Ácidos Graxos/análise , Carne/análise , Salmo salar/metabolismo , alfa-Tocoferol/administração & dosagem , Animais , Aquicultura , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Glutationa Peroxidase/análise , Fígado/enzimologia , Malondialdeído , Valor Nutritivo , Superóxido Dismutase/análise , Vitamina E/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA