Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1866(6): 130118, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35248671

RESUMO

BACKGROUND: N-Glycan branching regulates various functions of glycoproteins. N-Acetylglucosaminyltransferase V (GnT-V) is a GlcNAc transferase that acts on N-glycans and the GnT-V-producing branch is highly related to cancer progression. This indicates that specific GnT-V inhibitors may be drug candidates for cancer treatment. To design novel GnT-V inhibitors, we focused on the unique and weak recognition of the donor substrate UDP-GlcNAc by GnT-V. On the basis of the catalytic pocket structure, we hypothesized that UDP-GlcNAc analogs with increasing hydrophobicity may be GnT-V inhibitors. METHODS: We chemically synthesized 10 UDP-GlcNAc analogs in which one or two phosphate groups were replaced with hydrophobic groups. To test these compounds, we set up an HPLC-based enzyme assay system for all N-glycan-branching GlcNAc transferases in which GnT-I-V activity was measured using purified truncated enzymes. Using this system, we assessed the inhibitory effects of the synthesized compounds on GnT-V and their specificity. RESULTS: Several UDP-GlcNAc analogs inhibited GnT-V activity, although the inhibition potency was modest. Compared with other GnTs, these compounds showed a preference for GnT-V, which suggested that GnT-V was relatively tolerant of hydrophobicity in the donor substrate. Docking models of the inhibitory compounds with GnT-V suggested the mechanisms of how these compounds interacted with GnT-V and inhibited its action. CONCLUSIONS: Chemical modification of the donor substrate may be a promising strategy to develop selective inhibitors of GnT-V. GENERAL SIGNIFICANCE: Our findings provide new insights into the design of GnT inhibitors and how GnTs recognize the donor substrate.


Assuntos
Neoplasias , Polissacarídeos , Glicoproteínas , Humanos , Polissacarídeos/química , Polissacarídeos/farmacologia , Difosfato de Uridina
2.
Glycobiology ; 27(11): 1006-1015, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973141

RESUMO

Core fucosylation, a posttranslational modification of N-glycans, modifies several growth factor receptors and impacts on their ligand binding affinity. Core-fucose-deficient mice generated by ablating the α1,6 fucosyltransferase enzyme, Fut8, exhibit severe pulmonary emphysema, partly due to impaired macrophage function, similar to aged Toll-like receptor 4 (Tlr4)-deficient mice. We therefore suspect that a lack of core fucose affects the TLR4-dependent signaling pathway. Indeed, upon lipopolysaccharide stimulation, Fut8-deficient mouse embryonic fibroblasts (MEFs) produced similar levels of interleukin-6 but markedly reduced levels of interferon-ß (IFN-ß) compared with wild-type MEFs. Lectin blot analysis of the TLR4 signaling complex revealed that core fucosylation was specifically found on CD14. Even though similar levels of TLR4/myeloid differentiation factor 2 (MD2) activation and dimerization were observed in Fut8-deficient cells after lipopolysaccharide stimulation, internalization of TLR4 and CD14 was significantly impaired. Given that internalized TLR4/MD2 induces IFN-ß production, impaired IFN-ß production in Fut8-deficient cells is ascribed to impaired TLR4/MD2 internalization. These data show for the first time that glycosylation critically regulates TLR4 signaling.


Assuntos
Fucose/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Células HEK293 , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L268-L276, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011617

RESUMO

Emphysema is a typical component of chronic obstructive pulmonary disease (COPD), a progressive and inflammatory airway disease. However, no effective treatment currently exists. Here, we show that keratan sulfate (KS), one of the major glycosaminoglycans produced in the small airway, decreased in lungs of cigarette smoke-exposed mice. To confirm the protective effect of KS in the small airway, a disaccharide repeating unit of KS designated L4 ([SO3--6]Galß1-4[SO3--6]GlcNAc) was administered to two murine models: elastase-induced-emphysema and LPS-induced exacerbation of a cigarette smoke-induced emphysema. Histological and microcomputed tomography analyses revealed that, in the mouse elastase-induced emphysema model, administration of L4 attenuated alveolar destruction. Treatment with L4 significantly reduced neutrophil influx, as well as the levels of inflammatory cytokines, tissue-degrading enzymes (matrix metalloproteinases), and myeloperoxidase in bronchoalveolar lavage fluid, suggesting that L4 suppressed inflammation in the lung. L4 consistently blocked the chemotactic migration of neutrophils in vitro. Moreover, in the case of the exacerbation model, L4 inhibited inflammatory cell accumulation to the same extent as that of dexamethasone. Taken together, L4 represents one of the potential glycan-based drugs for the treatment of COPD through its inhibitory action against inflammation.


Assuntos
Dissacarídeos/uso terapêutico , Progressão da Doença , Sulfato de Queratano/uso terapêutico , Pneumonia/tratamento farmacológico , Pneumonia/prevenção & controle , Enfisema Pulmonar/tratamento farmacológico , Animais , Líquido da Lavagem Broncoalveolar , Dexametasona/farmacologia , Dissacarídeos/farmacologia , Modelos Animais de Doenças , Sulfato de Queratano/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Elastase Pancreática/metabolismo , Pneumonia/complicações , Pneumonia/patologia , Alvéolos Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/complicações , Enfisema Pulmonar/patologia , Células RAW 264.7 , Fumar , Sus scrofa
4.
Cell Chem Biol ; 23(7): 782-792, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27447047

RESUMO

Fucose, a terminal sugar in glycoconjugates, critically regulates various physiological and pathological phenomena, including cancer development and inflammation. However, there are currently no probes for efficient labeling and detection of this sugar. We chemically synthesized a novel series of alkynyl-fucose analogs as probe candidates and found that 7-alkynyl-fucose gave the highest labeling efficiency and low cytotoxicity. Among the fucose analogs, 7-alkynyl-fucose was the best substrate against all five fucosyltransferases examined. We confirmed its conversion to the corresponding guanosine diphosphate derivative in cells and found that cellular glycoproteins were labeled much more efficiently with 7-alkynyl-fucose than with an existing probe. 7-Alkynyl-fucose was detected in the N-glycan core by mass spectrometry, and 7-alkynyl-fucose-modified proteins mostly disappeared in core-fucose-deficient mouse embryonic fibroblasts, suggesting that this analog mainly labeled core fucose in these cells. These results indicate that 7-alkynyl-fucose is a highly sensitive and powerful tool for basic glycobiology research and clinical application for biomarker discovery.


Assuntos
Biomarcadores Tumorais/análise , Fucose/farmacologia , Sondas Moleculares/farmacologia , Polissacarídeos/análise , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fucose/análogos & derivados , Fucose/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Sondas Moleculares/síntese química , Sondas Moleculares/química
5.
J Proteomics ; 127(Pt B): 386-94, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26206179

RESUMO

We previously reported that knockout mice for α1,6-fucosyltransferase (Fut8), which catalyzes the biosynthesis of core-fucose in N-glycans, develop emphysema and that Fut8 heterozygous knockout mice are more sensitive to cigarette smoke-induced emphysema than wild-type mice. Moreover, a lower FUT8 activity was found to be associated with a faster decline in lung function among chronic obstructive pulmonary disease (COPD) patients. These results led us to hypothesize that core-fucosylation levels in a glycoprotein could be used as a biomarker for COPD. We focused on a lung-specific glycoprotein, surfactant protein D (SP-D), which plays a role in immune responses and is present in the distal airways, alveoli, and blood circulation. The results of a glycomic analysis reported herein demonstrate the presence of a core-fucose in an N-glycan on enriched SP-D from pooled human sera. We developed an antibody-lectin enzyme immunoassay (EIA) for assessing fucosylation (core-fucose and α1,3/4 fucose) in COPD patients. The results indicate that fucosylation levels in serum SP-D are significantly higher in COPD patients than in non-COPD smokers. The severity of emphysema was positively associated with fucosylation levels in serum SP-D in smokers. Our findings suggest that increased fucosylation levels in serum SP-D are associated with the development of COPD. BIOLOGICAL SIGNIFICANCE: It has been proposed that serum SP-D concentrations are predictive of COPD pathogenesis, but distinguishing between COPD patients and healthy individuals to establish a clear cut-off value is difficult because smoking status highly affects circulating SP-D levels. Herein, we focused on N-glycosylation in SP-D and examined whether or not N-glycosylation patterns in SP-D are associated with the pathogenesis of COPD. We performed an N-glycomic analysis of human serum SP-D and the results show that a core-fucose is present in its N-glycan. We also found that the N-glycosylation in serum SP-D was indeed altered in COPD, that is, fucosylation levels including core-fucosylation are significantly increased in COPD patients compared with non-COPD smokers. The severity of emphysema was positively associated with fucosylation levels in serum SP-D in smokers. Our findings shed new light on the discovery and/or development of a useful biomarker based on glycosylation changes for diagnosing COPD. This article is part of a Special Issue entitled: HUPO 2014.


Assuntos
Fucose , Doença Pulmonar Obstrutiva Crônica/sangue , Proteína D Associada a Surfactante Pulmonar/sangue , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/sangue , Feminino , Glicosilação , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade
6.
Data Brief ; 5: 707-11, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26958622

RESUMO

In order to verify the protein enriched from pooled human sera to be a lung-specific protein surfactant protein-D (SP-D), we performed peptide mass fingerprinting (PMF)-based protein identification. MASCOT search results of the obtained PMF unequivocally demonstrated that it is identical to human SP-D. Meanwhile, we performed MALDI-QIT-TOF mass spectrometry-based N-glycomic analysis of the recombinant human SP-D produced in murine myeloma cells. The obtained mass spectra of N-glycans from the recombinant SP-D demonstrated that the recombinant protein is almost exclusively modified with core-fucosylated N-glycans [1].

7.
Glycobiology ; 24(6): 542-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24663386

RESUMO

O-glycans are suitable targets as novel and useful tumor markers. The structures of O-glycans in human sera from four healthy controls were precisely analyzed to obtain the reference O-glycan database. O-glycans were prepared from sera by hydrazine treatment followed by fluorescent labeling with aminopyridine and identified using two-dimensional mapping, enzymatic digestion and mass spectrometry (MS) together with methanolysis and the use of newly synthesized sulfated oligosaccharides as standards. O-glycans, present at more than 0.01% of the total O-glycans, were analyzed, and 18 kinds of acidic and 2 kinds of neutral glycans were identified. NeuAcα2-3Galß1-3N-acetylgalactosamine (GalNAc) (61-64%), NeuAcα2-3Galß1-3(NeuAcα2-6)GalNAc (15-26%) and Galß1-3GalNAc (6-14%) were major components while other sialylated glycans, Galß1-3(NeuAcα2-6)GalNAc, Galß1-4GlcNAcß1-6(NeuAcα2-3Galß1-3)GalNAc and NeuAcα2-3Galß1-4GlcNAcß1-6(NeuAcα2-3Galß1-3)GalNAc were relatively minor components, accounting for ∼1-2%. Very minor glycans accounting for ∼0.01-0.1% of the total include (i) the neutral glycan, Galß1-4GlcNAcß1-6(Galß1-3)GalNAc, (ii) sialylated glycans, having sialyl Tn antigen, agalacto and trisialylated structures, (iii) fucosylated glycans forming blood type H antigen, blood type A antigen, blood type B antigen, Lewis X antigen and sialyl Lewis X antigen and (iv) sulfated glycans, having 6-sulfo and 3'-sulfo structures. Two kinds of clinically applied tumor markers namely sialyl Tn antigen and sialyl Lewis X antigen in healthy controls sera were revealed to be present at ∼0.1-0.2% of the total. However, other markers such as CA19-9 and DU-PAN-2 were not found, suggesting the relative amounts of these glycans to be <0.01%. These detailed O-glycan profiles will help to find novel carbohydrate tumor markers.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias/sangue , Oligossacarídeos/sangue , Polissacarídeos/sangue , Gangliosídeos , Glicosilação , Humanos , Neoplasias/patologia
8.
J Neurosci ; 33(24): 10037-47, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23761899

RESUMO

In demyelinating diseases such as multiple sclerosis, a critical problem is failure of remyelination, which is important for protecting axons against degeneration and restoring conduction deficits. However, the underlying mechanism of demyelination/remyelination remains unclear. N-acetylglucosaminyltransferase-IX (GnT-IX; also known as GnT-Vb) is a brain-specific glycosyltransferase that catalyzes the branched formation of O-mannosyl glycan structures. O-Mannosylation of α-dystroglycan is critical for its function as an extracellular matrix receptor, but the biological significance of its branched structures, which are exclusively found in the brain, is unclear. In this study, we found that GnT-IX formed branched O-mannosyl glycans on receptor protein tyrosine phosphatase ß (RPTPß) in vivo. Since RPTPß is thought to play a regulatory role in demyelinating diseases, GnT-IX-deficient mice were subjected to cuprizone-induced demyelination. Cuprizone feeding for 8 weeks gradually promoted demyelination in wild-type mice. In GnT-IX-deficient mice, the myelin content in the corpus callosum was reduced after 4 weeks of treatment, but markedly increased at 8 weeks, suggesting enhanced remyelination under GnT-IX deficiency. Furthermore, astrocyte activation in the corpus callosum of GnT-IX-deficient mice was significantly attenuated, and an oligodendrocyte cell lineage analysis indicated that more oligodendrocyte precursor cells differentiated into mature oligodendrocytes. Together, branched O-mannosyl glycans in the corpus callosum in the brain are a necessary component of remyelination inhibition in the cuprizone-induced demyelination model, suggesting that modulation of O-mannosyl glycans is a likely candidate for therapeutic strategies.


Assuntos
Astrócitos/metabolismo , Doenças Desmielinizantes/enzimologia , Doenças Desmielinizantes/patologia , N-Acetilglucosaminiltransferases/deficiência , Fatores Etários , Animais , Encéfalo/patologia , Antígeno CD11b/metabolismo , Células Cultivadas , Cadeias Pesadas de Clatrina/metabolismo , Corpo Caloso/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Polissacarídeos/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo
9.
Glycobiology ; 23(6): 634-42, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22975979

RESUMO

We previously reported on the accumulation of a substantial amount of free N-acetylneuraminic acid (Neu5Ac)-containing complex-type N-glycans in human pancreatic cancer cells (Yabu M, Korekane H, Takahashi H, Ohigashi H, Ishikawa O, Miyamoto Y. 2013. Accumulation of free Neu5Ac-containing complex-type N-glycans in human pancreatic cancers. Glycoconj J, 30(3):247-256). In the present paper, we further extend our cancer glycomic study of human prostate cancer. Specifically, we demonstrate that, in addition to the free Neu5Ac-containing N-glycans, significant amounts of free deaminoneuraminic acid (KDN, 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid)-containing N-glycans had accumulated in the prostate cancer tissues from four of five patients. Indeed, in one of the four cases, the free KDN glycans accumulated as major components in prostate cancer tissue. The structures of the KDN-containing free oligosaccharides were analyzed by a variety of methods. Specifically, we used fluorescent labeling with aminopyridine combined with two-dimensional mapping, KDNase digestion and mass spectrometry to facilitate identification. The analysis also utilized newly synthesized KDN-linked oligosaccharides as standards. The prostate-specific glycans were composed of five species having the following sequence, KDN-Gal-GlcNAc-Man-Man-GlcNAc (α2,6-KDN-linked glycans being the dominant form). The most abundant free KDN-containing N-glycan was KDNα2-6Galß1-4GlcNAcß1-2Manα1-3Manß1-4GlcNAc followed by KDNα2-6Galß1-4GlcNAcß1-2Manα1-6Manß1-4GlcNAc. This is the first study to show unequivocal chemical evidence for the occurrence of KDN glycoconjugates in human tissues together with their detailed structures. These oligosaccharides might be developed as tumor markers, especially for prostate cancer.


Assuntos
Oligossacarídeos/metabolismo , Neoplasias da Próstata/metabolismo , Ácidos Siálicos/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Glicosídeo Hidrolases/química , Glicoesfingolipídeos/química , Glicoesfingolipídeos/isolamento & purificação , Glicoesfingolipídeos/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Ácidos Neuramínicos/química , Ácidos Neuramínicos/isolamento & purificação , Ácidos Neuramínicos/metabolismo , Neuraminidase/química , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Ácidos Siálicos/química , Ácidos Siálicos/isolamento & purificação
10.
Glycoconj J ; 30(3): 247-56, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22890903

RESUMO

We have analyzed the structures of glycosphingolipids and intracellular free glycans in human cancers. In our previous study, trace amounts of free N-acetylneuraminic acid (Neu5Ac)-containing complex-type N-glycans with a single GlcNAc at each reducing terminus (Gn1 type) was found to accumulate intracellularly in colorectal cancers, but were undetectable in most normal colorectal epithelial cells. Here, we used cancer glycomic analyses to reveal that substantial amounts of free Neu5Ac-containing complex-type N-glycans, almost all of which were α2,6-Neu5Ac-linked, accumulated in the pancreatic cancer cells from three out of five patients, but were undetectable in normal pancreatic cells from all five cases. These molecular species were mostly composed of five kinds of glycans having a sequence Neu5Ac-Gal-GlcNAc-Man-Man-GlcNAc and one with the following sequence Neu5Ac-Gal-GlcNAc-Man-(Man-)Man-GlcNAc. The most abundant glycan was Neu5Acα2-6Galß1-4GlcNAcß1-2Manα1-3Manß1-4GlcNAc, followed by Neu5Acα2-6Galß1-4GlcNAcß1-2Manα1-6Manß1-4GlcNAc. This is the first study to show unequivocal evidence for the occurrence of free Neu5Ac-linked N-glycans in human cancer tissues. Our findings suggest that free Neu5Ac-linked glycans may serve as a useful tumor marker.


Assuntos
Adenocarcinoma/metabolismo , Glucanos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neoplasias Pancreáticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sequência de Carboidratos , Feminino , Glucanos/química , Glicômica , Humanos , Masculino , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/química
11.
Ann N Y Acad Sci ; 1253: 159-69, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22380786

RESUMO

Glycobiology has contributed tremendously to the discovery and characterization of cancer-related biomarkers containing glycans (i.e., glyco-biomarkers) and a more detailed understanding of cancer biology. It is now recognized that most chronic diseases involve some elements of chronic inflammation; these include cancer, Alzheimer's disease, and metabolic syndrome (including consequential diabetes mellitus and cardiovascular diseases). By extending the knowledge and experience of the glycobiology community regarding cancer biomarker discovery, we should be able to contribute to the discovery of diagnostic/prognostic glyco-biomarkers of other chronic diseases that involve chronic inflammation. Future integration of large-scale "omics"-type data (e.g., genomics, epigenomics, transcriptomics, proteomics, and glycomics) with computational model building, or a systems glycobiology approach, will facilitate such efforts.


Assuntos
Inflamação/metabolismo , Polissacarídeos/metabolismo , Doença de Alzheimer/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Feminino , Glicômica , Humanos , Masculino , Polissacarídeos/química , Doença Pulmonar Obstrutiva Crônica/metabolismo , Biologia de Sistemas
12.
J Biol Chem ; 287(20): 16699-708, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22433854

RESUMO

We previously demonstrated that a deficiency in core fucosylation caused by the genetic disruption of α1,6-fucosyltransferase (Fut8) leads to lethal abnormalities and the development of emphysematous lesions in the lung by attenuation of TGF-ß1 receptor signaling. Herein, we investigated the physiological relevance of core fucosylation in the pathogenesis of emphysema using viable heterozygous knock-out mice (Fut8(+/-)) that were exposed to cigarette smoke (CS). The Fut8(+/-) mice exhibited a marked decrease in FUT8 activity, and matrix metalloproteinase (MMP)-9 activities were elevated in the lung at an early stage of exposure. Emphysema developed after a 3-month CS exposure, accompanied by the recruitment of large numbers of macrophages to the lung. CS exposure substantially and persistently elevated the expression level of Smad7, resulting in a significant reduction of Smad2 phosphorylation (which controls MMP-9 expression) in Fut8(+/-) mice and Fut8-deficient embryonic fibroblast cells. These in vivo and in vitro studies show that impaired core fucosylation enhances the susceptibility to CS and constitutes at least part of the disease process of emphysema, in which TGF-ß-Smad signaling is impaired and the MMP-mediated destruction of lung parenchyma is up-regulated.


Assuntos
Fucosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metaloproteinase 9 da Matriz/biossíntese , Enfisema Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Animais , Fucosiltransferases/genética , Regulação Enzimológica da Expressão Gênica/genética , Heterozigoto , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Knockout , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/genética
13.
Biochim Biophys Acta ; 1820(9): 1405-11, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22233759

RESUMO

BACKGROUND: Fucosylation is one of the most important types of glycosylations related to cancer. Our previous studies of the enzymatic basis and structural studies of α-fetoprotein (AFP) samples from liver cancer patients indicated that core-fucosylation by α1,6-fucosyltransferase (FUT8) resulted in the production of fucosylated AFP, and in fact fucosylated AFP allowed differential diagnosis in some types of liver cancer from liver cirrhosis. This served as a predictive biomarker for the development of liver cancer 3 to 18 months before it could be detected using imaging techniques. Fucosylated AFP is currently measured by means of a liquid-phase binding assay (LBA) or by an electrokinetic analyte transport assay (EATA). However, these methods require special instrumentation that is currently available only in major medical laboratories. To overcome this problem, we attempted to develop an enzyme immunoassay (EIA) based on the sandwich technique with specific antibody and lectin. RESULTS: Dilute solutions of highly fucosylated AFP in human sera were assayed using a microtiter plate coated with a periodate-oxidized anti-AFP antibody, a fucose-specific biotinylated Aleuria aurantia lectin (AAL), a peroxidase-conjugated streptoavidin, and a chemiluminescent detection system. The technique was able to measure highly fucosylated AFP diluted to 5 to 80ng/ml in human sera using the developed antibody-lectin EIA in combination with the enrichment of AFP. CONCLUSION: A simple method using an antibody-lectin EIA for quantifying fucosylated AFP that does not require special instrumentation was developed. GENERAL SIGNIFICANCE: The method can be generally applied to the quantitative measurement of various fucosylated glycoproteins using specific antibodies. This article is part of a Special Issue entitled Glycoproteomics.


Assuntos
Fucose/metabolismo , Técnicas Imunoenzimáticas/métodos , alfa-Fetoproteínas/análise , Anticorpos , Análise Química do Sangue/métodos , Sequência de Carboidratos , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Fucose/imunologia , Fucosiltransferases/metabolismo , Glicosilação , Humanos , Lectinas , Hepatopatias/sangue , Hepatopatias/diagnóstico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Modelos Biológicos , Valor Preditivo dos Testes , alfa-Fetoproteínas/química , alfa-Fetoproteínas/isolamento & purificação , alfa-Fetoproteínas/metabolismo
14.
BMB Rep ; 44(12): 772-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22189679

RESUMO

Branched N-glycans are produced by a series of glycosyltransferases including N-acetylglucosaminyltransferases and fucosyltransferases and their corresponding genes. Glycans on specific glycoproteins, which are attached via the action of glycosyltransferases, play key roles in cell adhesion and signaling. Examples of this are adhesion molecules or signaling molecules such as integrin and E-cadherin, as well as membrane receptors such as the EGF and TGFß receptors. These molecules also play pivotal roles in the underlying mechanism of a variety of disease such as cancer metastasis, diabetes, and chronic obstructive pulmonary disease (COPD). Alterations in the structures of branched N-glycans are also hall marks and are useful for cancer biomarkers and therapeutics against cancer. This mini-review describes some of our recent studies on a functional glycomics approach to the study of branched N-glycans produced by N-acetylglucosaminyltransferases III, IV, V and IX (Vb) (GnT-III, GnT-IV, V and IX (Vb)) and fucosyltransferase 8 (Fut8) and their patho-physiological significance, with emphasis on the importance of a systems glycobiology approach as a future perspective for glycobiology.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Polissacarídeos/metabolismo , Transdução de Sinais , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/química , Adesão Celular , Humanos , Neoplasias/tratamento farmacológico , Polissacarídeos/biossíntese , Polissacarídeos/química
15.
J Clin Biochem Nutr ; 48(1): 20-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21297907

RESUMO

Glucose is an energy substrate, as well as the primary source of nucleotide sugars, which are utilized as donor substrates in protein glycosylation. Appropriate glycosylation is necessary to maintain the stability of protein, and is also important in the localization and trafficking of proteins. The dysregulation of glycosylation results in the development of a variety of disorders, such as cancer, diabetes mellitus and emphysema. Glycosylation is kinetically regulated by dynamically changing the portfolio of glycosyltransferases, nucleotide sugars, and nucleotide sugar transporters, which together form a part of what is currently referred to as the "Glycan cycle". An excess or a deficiency in the expression of glycosyltransferases has been shown to alter the glycosylation pattern, which subsequently leads to the onset, progression and exacerbation of a number of diseases. Furthermore, alterations in intracellular nucleotide sugar levels can also modulate glycosylation patterns. It is observed that pathological hypoxic microenvironments frequently occur in solid cancers and inflammatory foci. Hypoxic conditions dramatically change gene expression profiles, by activating hypoxia-inducible factor-1, which mediates adaptive cellular responses. Hypoxia-induced glycosyltransferases and nucleotide sugar transporters have been shown to modulate glycosylation patterns that are part of the mechanism associated with cancer metastasis. Hypoxia-inducible factor-1 also induces the expression of glucose transporters and various types of glycolytic enzymes, leading to shifts in glucose metabolic patterns. This fact strongly suggests that hypoxic conditions are an important factor in modulating various nucleotide sugar biosynthetic pathways. This review discusses some of the current thinking of how hypoxia alters glucose metabolic fluxes that can modulate cellular glycosylation patterns and consequently modify cellular functions, particularly from the standpoint of the N-acetylglucosamine cycle, a part of the "Glycan cycle".

16.
Glycobiology ; 20(12): 1594-606, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20667987

RESUMO

We have precisely analyzed the structures of glycosphingolipids of human cancer cells and normal epithelial cells using several methods, including enzymatic release of carbohydrate moieties, fluorescent labeling, and identification using 2D mapping, enzymatic digestion, and mass spectrometry. These analyses enabled the identification of novel tumor-associated carbohydrate antigens that can be used to elucidate the involvement of carbohydrates in cancer malignancy and could act as candidate tumor markers. In our previous study, we identified a novel glycosphingolipid that accumulates in colon cancer cells, NeuAcα2-6(Fucα1-2)Galß1-4GlcNAcß1-3Galß1-4Glc (α2-6 sialylated type 2H, ST2H). Here, structural analyses of cancer cells and normal epithelial cells from 60 colorectal and five pancreatic cancer patients, including four and two Lewis-negative individuals, respectively, reveal the presence of an additional novel glycosphingolipid, NeuAcα2-6(Fucα1-2)Galß1-3GlcNAcß1-3Galß1-4Glc (α2-6 sialylated type 1H, ST1H). ST2H was found in colorectal and pancreatic cancer cells from about half of the cases. Unlike ST2H, ST1H was found in cancer cells from three out of six Lewis-negative patients (i.e., two cases of colorectal and one case of pancreatic cancer). However, the moiety was not found in normal epithelial cells or cancer cells from 59 Lewis-positive patients. These findings suggest that the accumulation of this carbohydrate antigen occurs predominantly in cancer cells of Lewis-negative patients. When the ST1H epitope is also carried on mucins as well as glycosphingolipids, this epitope is a promising tumor marker candidate, especially for Lewis-negative individuals.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/metabolismo , Células Epiteliais/metabolismo , Gangliosídeos , Glicoesfingolipídeos , Neoplasias Pancreáticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Sequência de Carboidratos , Neoplasias Colorretais/química , Células Epiteliais/química , Feminino , Gangliosídeos/química , Gangliosídeos/metabolismo , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/química
17.
J Biochem ; 148(3): 359-70, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20656882

RESUMO

The alpha2,6-sialylated blood group type 2H (ST2H) antigen (Fucalpha1-2(NeuAcalpha2-6)Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) is a fucoganglioside found in human colon cancer tissues. To elucidate an enzyme responsible for the ST2H antigen formation, we screened some partially purified candidate enzymes, alpha2,6-sialyltransferases, ST6Gal I and ST6Gal II, and alpha1,2-fucosyltransferases, FUT1 and FUT2 for their activities towards pyridylaminated type 2H (Fucalpha1-2Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) or LS-tetrasaccharide c (LST-c: NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) as acceptor substrates. Here we show the ST6Gal I transfers NeuAc from the donor CMP-NeuAc to the terminal Gal of PA-type 2H, which formed the ST2H antigen, but the others could not synthesize it. Using a recombinant ST6Gal I, enzymatic reactions with two types of acceptors, PA-type 2H and PA-lacto-N-neotetraose (LNnT), were kinetically analysed. On the basis of catalytic efficiency (V(max)/K(m)), the specificity of ST6Gal I towards the PA-type 2H was estimated to be 42 times lower than that for PA-LNnT. The overexpression of ST6Gal I in human colon cancer DLD-1 cells effectively resulted in the ST2H antigen formation, as judged by LC-ESI-IT-MS. Many lines of evidence suggest the up-regulation of ST6Gal I in human colon cancer specimens. Collectively, these findings indicate that ST6Gal I is responsible for ST2H antigen biosynthesis in human colon cancer cells.


Assuntos
Antígenos CD/metabolismo , Antígenos de Neoplasias/biossíntese , Antígenos de Grupos Sanguíneos/biossíntese , Neoplasias do Colo/diagnóstico , Sialiltransferases/metabolismo , Biomarcadores Tumorais/biossíntese , Linhagem Celular Tumoral , Fucosiltransferases/metabolismo , Humanos , Cinética , Especificidade por Substrato , Galactosídeo 2-alfa-L-Fucosiltransferase
18.
Glycobiology ; 19(9): 1018-33, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19541771

RESUMO

The structures of glycosphingolipids from highly purified colorectal cancer cells and normal colorectal epithelial cells of 16 patients have been analyzed in fine detail (Misonou Y, Shida K, Korekane H, Seki Y, Noura S, Ohue M, Miyamoto Y. 2009. Comprehensive Clinico-Glycomic Study of 16 Colorectal Cancer Specimens: Elucidation of aberrant glycosylation and ts mechanistic causes in colorectal cancer cells. J Proteome Res. 8:2990-3005). Further structural analyses demonstrated that colon cancer cells from two patients accumulated unusual glycosphingolipids which were not observed in either colorectal cancer cells or normal colorectal epithelial cells from the other patients. Mass spectrometry analyses revealed that the unusual structures include sulfated oligosaccharides. The structures of the glycosphingolipids of the cancer cells from these two cases were analyzed by methods which include enzymatic release of carbohydrate moieties, fluorescent labeling with aminopyridine and identification using two-dimensional mapping, enzymatic digestion and mass spectrometry together with methanolysis, and the use of newly synthesized sulfo-fucosylated oligosaccharides as standards. The colon cancer cells from one of the patients demonstrate a variety of oligosaccharides as major components which are sulfated at the C6 position of subterminal GlcNAc and at C3 positions of terminal galactose with or without sialylation or fucosylation. These include 6-sulfo Le(x), 6'-sialyl 6-sulfo lactosamine, and 3'-sialyl 6-sulfo Le(x), in addition to sialylated or fucosylated derivatives of type-1 and type-2 hybrid oligosaccharides. The colon cancer cells from the other patient have two kinds of sulfated oligosaccharides, a 6-sulfo Le(x) structure and a 3'-sulfo Le(x) structure, as minor components. Taking into consideration the clinical features of the two patients, the biological significance of sulfated glycosphingolipids on cancer cells is discussed.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias do Colo/metabolismo , Glicoesfingolipídeos/metabolismo , Sulfatos/metabolismo , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Glicoesfingolipídeos/química , Humanos , Dados de Sequência Molecular
19.
J Proteome Res ; 8(6): 2990-3005, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19292502

RESUMO

The structures of neutral and acidic glycosphingolipids from both normal colorectal epithelial cells and colorectal cancer cells, which were highly purified with the epithelial cell marker CD326, have been analyzed. The analysis was performed on samples from 16 patients. The carbohydrate moieties from glycosphingolipids were released by endoglycoceramidase II, labeled by pyridylamination, and identified using two-dimensional mapping and mass spectrometry. The structures from normal colorectal epithelial cells are characterized by dominant expression of neutral type-1 chain oligosaccharides. Three specific alterations were observed in malignant transformation; increased ratios of type-2 oligosaccharides, increased alpha2-3 and/or alpha2-6 sialylation and increased alpha1-2 fucosylation. Although the degree of alteration varies case to case, we found that two characteristic alterations tend to be associated with clinical features. One is a shift from type-1 dominant normal colorectal epithelial cells to type-2 dominant colorectal cancer cells. This shift was found in 5 patients having hepatic metastasis. The other is specific elevation of alpha2-3 sialylation observed in 2 cases exhibiting high serum levels of CA19-9. Examination of the activities of the related glycosyltransferases revealed that while some alterations could be accounted for by changes in the activities of related glycosyltransferases others could not. Although the number of cases analyzed is small, these findings provide valuable information which will help in the elucidation of the mechanism of synthesis of aberrant glycosylation and its involvement in cancer malignancy.


Assuntos
Neoplasias Colorretais/metabolismo , Glicômica/métodos , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Colo/citologia , Colo/metabolismo , Colo/patologia , Eletroforese em Gel Bidimensional , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Reto/citologia , Reto/metabolismo , Reto/patologia , Espectrometria de Massas por Ionização por Electrospray
20.
Anal Biochem ; 364(1): 37-50, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17350584

RESUMO

The structures of acidic glycosphingolipids in colon adenocarcinoma have been analyzed extensively using a number of conventional methods, such as thin-layer chromatography and methylation analysis, and a variety of acidic glycosphingolipids present in the tissues have been reported. However, because of a number of limitations in the techniques used in previous studies in terms of resolution, quantification, and sensitivity, we employed a different method that could be applied to small amounts of tissue. In this technique, the carbohydrate moieties of acidic glycosphingolipids from approximately 20mg of colon adenocarcinoma were released by endoglycoceramidase II and were labeled by pyridylamination. They were separated and structurally characterized by a two-dimensional HPLC mapping technique, electrospray ionization tandem mass spectrometry (ESI-MS/MS), and enzymatic cleavage. A total of 22 major acidic glycosphingolipid structures were identified, and their relative quantities were revealed in detail. They are composed of 1 sulfated (SM3), 1 lacto-series (SLe(a)), 6 kinds of ganglio-series, and 14 kinds of neolacto-series glycosphingolipids. They include most of the acidic glycosphingolipids previously reported to be present in the tissues and two previously unknown fucogangliosides sharing the same terminal structure: NeuAcalpha2-6(Fucalpha1-2)Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc, and NeuAcalpha2-6(Fucalpha1-2)Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3-Galbeta1-4Glc. Thus, this highly sensitive, high-resolution analysis enabled the identification of novel structures of acidic glycosphingolipids from small amounts of already comprehensively studied cancerous tissues. This method is a powerful tool for microanalysis of glycosphingolipid structures from small quantities of cancerous tissues and should be applicable to different types of malignant tissues.


Assuntos
Glicoesfingolipídeos Acídicos/isolamento & purificação , Adenocarcinoma/química , Biomarcadores Tumorais/isolamento & purificação , Neoplasias do Colo/química , Gangliosídeos/isolamento & purificação , Oligossacarídeos de Cadeias Ramificadas/química , Glicoesfingolipídeos Acídicos/química , Aminopiridinas/química , Biomarcadores Tumorais/química , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão/métodos , Fucose/química , Gangliosídeos/química , Géis/química , Glicosídeo Hidrolases/metabolismo , Humanos , Oligossacarídeos de Cadeias Ramificadas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA