Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930123

RESUMO

Background/Objective: With the rapid advancement in surgical technologies, new workflows for mandibular reconstruction are constantly being evaluated. Cutting guides are extensively employed for defining osteotomy planes but are prone to errors during fabrication and positioning. A virtually defined osteotomy plane and drilling holes in robotic surgery minimize potential sources of error and yield highly accurate outcomes. Methods: Ten mandibular replicas were evaluated after cutting-guided saw osteotomy and robot-guided laser osteotomy following reconstruction with patient-specific implants. The descriptive data analysis summarizes the mean, standard deviation (SD), median, minimum, maximum, and root mean square (RMS) values of the surface comparison for 3D printed models regarding trueness and precision. Results: The saw group had a median trueness RMS value of 2.0 mm (SD ± 1.7) and a precision of 1.6 mm (SD ± 1.4). The laser group had a median trueness RMS value of 1.2 mm (SD ± 1.1) and an equal precision of 1.6 mm (SD ± 1.4). These results indicate that robot-guided laser osteotomies have a comparable accuracy to cutting-guided saw osteotomies, even though there was a lack of statistical significance. Conclusions: Despite the limited sample size, this digital high-tech procedure has been shown to be potentially equivalent to the conventional osteotomy method. Robotic surgery and laser osteotomy offers enormous advantages, as they enable the seamless integration of precise virtual preoperative planning and exact execution in the human body, eliminating the need for surgical guides in the future.

2.
Br J Oral Maxillofac Surg ; 60(8): 1092-1096, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35835610

RESUMO

The surgery-first concept is becoming increasingly popular in orthognathic surgery since it offers major advantages such as a reduction of treatment duration and an increase in patient satisfaction by eliminating phases of presurgical orthodontic decompensation. Here, we present a novel interdisciplinary pathway of a fully virtual orthodontic-surgical planning concept in a surgery-first setting using a 3D-printed cutting guide and a customised maxillary implant for the Le Fort I osteotomy as well as a CAD/CAM-based stereolithographic final splint. Patient data from cone-beam computed tomography of the skull and a full arch dental scan were processed using the OnyxCeph3TM software (Image Instruments). A mutual computer-aided surgical simulation was conducted by the orthodontist and the oral and maxillofacial surgeon to determine the three-dimensional maxillary and mandibular movements. In a separate virtual planning session, the surgeon designed a customised maxillary guide and implant for precise intraoperative transfer (Geomagic Freeform Plus software, 3DSystems). A 3D-printed CAD/CAM-based final splint was fabricated by the orthodontist and used for accurate mandibular repositioning. We established a comprehensive virtual interdisciplinary orthognathic workflow and successfully applied this concept with a high level of accuracy in a series of surgery-first patients with different types of dentofacial anomalies. This novel fully computer-based pathway offers a high potential to improve the outcomes of orthognathic surgery and reduce total treatment time in the management of the orthognathic patient.


Assuntos
Implantes Dentários , Cirurgia Ortognática , Procedimentos Cirúrgicos Ortognáticos , Cirurgia Assistida por Computador , Desenho Assistido por Computador , Humanos , Imageamento Tridimensional/métodos , Procedimentos Cirúrgicos Ortognáticos/métodos , Planejamento de Assistência ao Paciente , Cirurgia Assistida por Computador/métodos
3.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530649

RESUMO

Cleft alveolar bone defects can be treated potentially with tissue engineered bone grafts. Herein, we developed novel biphasic bone constructs consisting of two clinically certified materials, a calcium phosphate cement (CPC) and a fibrin gel that were biofabricated using 3D plotting. The fibrin gel was loaded with mesenchymal stromal cells (MSC) derived from bone marrow. Firstly, the degradation of fibrin as well as the behavior of cells in the biphasic system were evaluated in vitro. Fibrin degraded quickly in presence of MSC. Our results showed that the plotted CPC structure acted slightly stabilizing for the fibrin gel. However, with passing time and fibrin degradation, MSC migrated to the CPC surface. Thus, the fibrin gel could be identified as cell delivery system. A pilot study in vivo was conducted in artificial craniofacial defects in Lewis rats. Ongoing bone formation could be evidenced over 12 weeks but the biphasic constructs were not completely osseous integrated. Nevertheless, our results show that the combination of 3D plotted CPC constructs and fibrin as suitable cell delivery system enables the fabrication of novel regenerative implants for the treatment of alveolar bone defects.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Fibrina/química , Engenharia Tecidual , Animais , Diferenciação Celular , Movimento Celular , Sobrevivência Celular , Cementoplastia/métodos , Hidrogéis/química , Imuno-Histoquímica , Células-Tronco Mesenquimais , Osteogênese , Ratos , Alicerces Teciduais , Microtomografia por Raio-X
4.
J Prosthodont Res ; 65(1): 46-51, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32938859

RESUMO

PURPOSE: Many studies have shown the ability of low intensity pulsed ultrasound (LIPUS) to stimulate the bone, cartilage and tendon regeneration but only a few studied LIPUS interest in the regeneration of the oral mucosa. The purpose of this study is to assess the ability of LIPUS to stimulate the regeneration of the palatal mucosa in a porcine model. METHODS: Ten adults mini-pigs were used. Two mucosal wounds were realised on the left and right side of the palate of each pig. The right side was treated with LIPUS at 1 MHz of frequency and 300 mW/cm2 of acoustic intensity. The left side was not treated. The morphology of the wound was evaluated using a polymer silicone molding. RESULTS: The difference between two sides was significant from day 7 with a p value < 0.0001. At day 21, the wound is completely healed on all pigs with LIPUS. The control soft tissue defect exposed a healing of 80%. CONCLUSIONS: The present study showed that the use of LIPUS on the oral mucosa accelerates the healing of the masticatory mucosa.


Assuntos
Mucosa Bucal , Terapia por Ultrassom , Animais , Suínos , Porco Miniatura , Ondas Ultrassônicas , Cicatrização
5.
Front Immunol ; 11: 1593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849540

RESUMO

Most of the few patients with homozygous CD70 deficiency described to date suffered from EBV-related malignancies in early childhood. We present a woman with CD70 deficiency diagnosed in adulthood. She presented in childhood with recurrent airway infections due to encapsulated bacteria, herpes zoster and a fulminant EBV infection followed by chronic EBV infection with mild lymphoproliferation and severe gingivitis/periodontal disease with high EBV viral load in saliva and gingival plaques as an adult. Up to the age of 24 years she developed no malignancy despite constant EBV viremia since primary EBV infection 15 years previously. Immunologic evaluation in childhood showed hypogammaglobulinemia with impaired polysaccharide responsiveness. She has been stable on immunoglobulin substitution with no further severe viral infections and no bacterial airway infections in adulthood. Targeted panel sequencing at the age of 20 years revealed a homozygous CD70 missense mutation (ENST00000245903.3:c.2T>C). CD70 deficiency was confirmed by absent CD70 expression of B cells and activated T cell blasts. The patient finished high school, persues an academic career and has rarely sick days at college. The clinical course of our patient may help to counsel parents of CD70-deficient patients with regard to prognosis and therapeutic options including haematopoetic stem cell transplantation.


Assuntos
Ligante CD27/deficiência , Suscetibilidade a Doenças , Infecções por Vírus Epstein-Barr/etiologia , Gengivite/etiologia , Herpesvirus Humano 4/fisiologia , Infecções do Sistema Genital/etiologia , Adolescente , Adulto , Biomarcadores , Criança , Infecções por Vírus Epstein-Barr/diagnóstico , Feminino , Predisposição Genética para Doença , Gengivite/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linhagem , Radiografia , Recidiva , Reinfecção , Infecções do Sistema Genital/diagnóstico , Índice de Gravidade de Doença , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
6.
Biofabrication ; 10(4): 045002, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30004388

RESUMO

Due to their characteristic resemblance of the mineral component of bone, calcium phosphates are widely accepted as optimal bone substitute materials. Recent research focused on the development of pasty calcium phosphate cement (CPC) formulations, which can be fabricated into various shapes by low-temperature extrusion-based additive manufacturing, namely 3D plotting. While it could be demonstrated that sensitive substances like growth factors can be integrated in such printed CPC scaffolds without impairment of their biological activity live cells cannot be suspended in CPC as they may not be functional when enclosed in a solid and stiff matrix. In contrast, 3D bioprinting of soft cell-laden hydrogels (bioinks) enables the fabrication of constructs with spatially defined cell distribution, which has the potential to overcome problems of conventional cell seeding techniques-but such objects lack mechanical stability. Herein, we combine 3D plotting of CPC and bioprinting of a cell-laden bioink for the first time. As model bioink, an alginate-methylcellulose blend (alg/mc) was used, previously developed by us. Firstly, a fabrication regime was established, enabling optimal setting of CPC and cell survival inside the bioink. As the cells are exposed to the chemical changes of CPC precursors during setting, we studied the compatibility of the complex system of CPC and cell-laden alg/mc for a combined extrusion process and characterized the cellular behavior of encapsulated human mesenchymal stroma cells within the bioink at the interface and in direct vicinity to the CPC. Furthermore, biphasic scaffolds were mechanically characterized and a model for osteochondral tissue grafts is proposed. The manuscript discusses possible impacts of the CPC setting reaction on cells within the bioink and illustrates the advantages of CPC in bioprinting as alternative to the commonly used thermoplasts for bone tissue engineering.


Assuntos
Bioimpressão , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Tinta , Minerais/química , Alicerces Teciduais/química , Alginatos/química , Sobrevivência Celular , Força Compressiva , Humanos , Umidade , Células-Tronco Mesenquimais/citologia , Metilcelulose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA