Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 480(16): 1299-1316, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37551632

RESUMO

Conventional protein kinase C (cPKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent the accumulation of aberrantly active enzyme. Here, we examine how a highly conserved residue in the C1A domain of cPKC isozymes permits quality-control degradation when mutated to histidine in cancer (PKCß-R42H) and blocks down-regulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (PKCγ-R41P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and down-regulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Isoenzimas/metabolismo , Doenças Neurodegenerativas/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Mutação , Neoplasias/genética
2.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993163

RESUMO

Conventional protein kinase C (PKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent accumulation of aberrantly active enzyme. Here, we examine how a single residue in the C1A domain of PKCß, arginine 42 (R42), permits quality-control degradation when mutated to histidine in cancer (R42H) and blocks downregulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (R42P). Using FRET-based biosensors, we determined that mutation of R42 to any residue, including lysine, resulted in reduced autoinhibition as indicated by higher basal activity and faster agonist-induced plasma membrane translocation. R42 is predicted to form a stabilizing salt bridge with E655 in the C-tail and mutation of E655, but not neighboring E657, also reduced autoinhibition. Western blot analysis revealed that whereas R42H had reduced stability, the R42P mutant was stable and insensitive to activator-induced ubiquitination and downregulation, an effect previously observed by deletion of the entire C1A domain. Molecular dynamics (MD) simulations and analysis of stable regions of the domain using local spatial pattern (LSP) alignment suggested that P42 interacts with Q66 to impair mobility and conformation of one of the ligand-binding loops. Additional mutation of Q66 to the smaller asparagine (R42P/Q66N), to remove conformational constraints, restored degradation sensitivity to that of WT. Our results unveil how disease-associated mutations of the same residue in the C1A domain can toggle between gain- or loss-of-function of PKC.

3.
Proc Natl Acad Sci U S A ; 119(47): e2215420119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375071

RESUMO

Topological analysis of protein residue networks (PRNs) is a common method that can help to understand the roles of individual residues. Here, we used protein kinase A as a study object and asked what already known functionally important residues can be detected by network analysis. Along several traditional approaches to weight edges in PRNs we used local spatial pattern (LSP) alignment that assigns high weights to edges only if CαCß vectors for the corresponding residues retain their mutual positions and orientation. Our results show that even short molecular dynamic simulations of 10 to 20 ns can give convergent values for betweenness and degree centralities calculated from the LSP-based PRNs. Using these centralities, we were able to clearly distinguish a group of residues that are highly conserved in protein kinases and play important functional and regulatory roles. In comparison, traditional methods based on cross-correlation and linear mutual information were much less efficient for this particular task. These results call for reevaluation of the current methods to generate PRNs.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Simulação de Dinâmica Molecular
4.
J Biol Chem ; 296: 100746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33957122

RESUMO

It is difficult to imagine where the signaling community would be today without the Protein Data Bank. This visionary resource, established in the 1970s, has been an essential partner for sharing information between academics and industry for over 3 decades. We describe here the history of our journey with the protein kinases using cAMP-dependent protein kinase as a prototype. We summarize what we have learned since the first structure, published in 1991, why our journey is still ongoing, and why it has been essential to share our structural information. For regulation of kinase activity, we focus on the cAMP-binding protein kinase regulatory subunits. By exploring full-length macromolecular complexes, we discovered not only allostery but also an essential motif originally attributed to crystal packing. Massive genomic data on disease mutations allows us to now revisit crystal packing as a treasure chest of possible protein:protein interfaces where the biological significance and disease relevance can be validated. It provides a new window into exploring dynamic intrinsically disordered regions that previously were deleted, ignored, or attributed to crystal packing. Merging of crystallography with cryo-electron microscopy, cryo-electron tomography, NMR, and millisecond molecular dynamics simulations is opening a new world for the signaling community where those structure coordinates, deposited in the Protein Data Bank, are just a starting point!


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/história , Animais , Microscopia Crioeletrônica , História do Século XX , História do Século XXI , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
5.
Sci Signal ; 14(678)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850054

RESUMO

The complex mTORC2 is accepted to be the kinase that controls the phosphorylation of the hydrophobic motif, a key regulatory switch for AGC kinases, although whether mTOR directly phosphorylates this motif remains controversial. Here, we identified an mTOR-mediated phosphorylation site that we termed the TOR interaction motif (TIM; F-x3-F-pT), which controls the phosphorylation of the hydrophobic motif of PKC and Akt and the activity of these kinases. The TIM is invariant in mTORC2-dependent AGC kinases, is evolutionarily conserved, and coevolved with mTORC2 components. Mutation of this motif in Akt1 and PKCßII abolished cellular kinase activity by impairing activation loop and hydrophobic motif phosphorylation. mTORC2 directly phosphorylated the PKC TIM in vitro, and this phosphorylation event was detected in mouse brain. Overexpression of PDK1 in mTORC2-deficient cells rescued hydrophobic motif phosphorylation of PKC and Akt by a mechanism dependent on their intrinsic catalytic activity, revealing that mTORC2 facilitates the PDK1 phosphorylation step, which, in turn, enables autophosphorylation. Structural analysis revealed that PKC homodimerization is driven by a TIM-containing helix, and biophysical proximity assays showed that newly synthesized, unphosphorylated PKC dimerizes in cells. Furthermore, disruption of the dimer interface by stapled peptides promoted hydrophobic motif phosphorylation. Our data support a model in which mTORC2 relieves nascent PKC dimerization through TIM phosphorylation, recruiting PDK1 to phosphorylate the activation loop and triggering intramolecular hydrophobic motif autophosphorylation. Identification of TIM phosphorylation and its role in the regulation of PKC provides the basis for AGC kinase regulation by mTORC2.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina , Peptídeos , Proteína Quinase C , Proteínas Proto-Oncogênicas c-akt , Motivos de Aminoácidos , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Hum Mutat ; 41(3): 619-631, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31765060

RESUMO

MUSK encodes the muscle-specific receptor tyrosine kinase (MuSK), a key component of the agrin-LRP4-MuSK-DOK7 signaling pathway, which is essential for the formation and maintenance of highly specialized synapses between motor neurons and muscle fibers. We report a patient with severe early-onset congenital myasthenic syndrome and two novel missense mutations in MUSK (p.C317R and p.A617V). Functional studies show that MUSK p.C317R, located at the frizzled-like cysteine-rich domain of MuSK, disrupts an integral part of MuSK architecture resulting in ablated MuSK phosphorylation and acetylcholine receptor (AChR) cluster formation. MUSK p.A617V, located at the kinase domain of MuSK, enhances MuSK phosphorylation resulting in anomalous AChR cluster formation. The identification and evidence for pathogenicity of MUSK mutations supported the initiation of treatment with ß2-adrenergic agonists with a dramatic improvement of muscle strength in the patient. This work suggests uncharacterized mechanisms in which control of the precise level of MuSK phosphorylation is crucial in governing synaptic structure.


Assuntos
Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Sinapses/genética , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Alelos , Substituição de Aminoácidos , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Análise Mutacional de DNA , Feminino , Marcação de Genes , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Proteínas Musculares/metabolismo , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/metabolismo , Linhagem , Fosforilação , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/química , Receptores Colinérgicos/metabolismo , Relação Estrutura-Atividade , Sinapses/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(30): 15052-15061, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285328

RESUMO

A dense interplay between structure and dynamics underlies the working of proteins, especially enzymes. Protein kinases are molecular switches that are optimized for their regulation rather than catalytic turnover rates. Using long-simulations dynamic allostery analysis, this study describes an exploration of the dynamic kinase:peptide complex. We have used protein kinase A (PKA) as a model system as a generic prototype of the protein kinase superfamily of signaling enzymes. Our results explain the role of dynamic coupling of active-site residues that must work in coherence to provide for a successful activation or inhibition response from the kinase. Amino acid networks-based community analysis allows us to ponder the conformational entropy of the kinase:nucleotide:peptide ternary complex. We use a combination of 7 peptides that include 3 types of PKA-binding partners: Substrates, products, and inhibitors. The substrate peptides provide for dynamic insights into the enzyme:substrate complex, while the product phospho-peptide allows for accessing modes of enzyme:product release. Mapping of allosteric communities onto the PKA structure allows us to locate the more unvarying and flexible dynamic regions of the kinase. These distributions, when correlated with the structural elements of the kinase core, allow for a detailed exploration of key dynamics-based signatures that could affect peptide recognition and binding at the kinase active site. These studies provide a unique dynamic allostery-based perspective to kinase:peptide complexes that have previously been explored only in a structural or thermodynamic context.


Assuntos
Trifosfato de Adenosina/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Inibidores Enzimáticos/química , Magnésio/química , Peptídeos/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores Enzimáticos/metabolismo , Cinética , Magnésio/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Especificidade por Substrato , Termodinâmica
8.
IUBMB Life ; 71(6): 672-684, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31059206

RESUMO

Eukaryotic protein kinases (EPKs) regulate almost every biological process and have evolved to be dynamic molecular switches; this is in stark contrast to metabolic enzymes, which have evolved to be efficient catalysts. In particular, the highly conserved active site of every EPK is dynamically and transiently assembled by a process that is highly regulated and unique for every protein kinase. We review here the essential features of the kinase core, focusing on the conserved motifs and residues that are embedded in every kinase. We explore, in particular, how the hydrophobic core architecture specifically drives the dynamic assembly of the regulatory spine and consequently the organization of the active site where the γ-phosphate of ATP is positioned by a convergence of conserved motifs including a conserved regulatory triad for transfer to a protein substrate. In conclusion, we show how the flanking N- and C-terminal tails often classified as intrinsically disordered regions, as well as flanking domains, contribute in a highly kinase-specific manner to the regulation of the conserved kinase core. Understanding this process as well as how one kinase activates another remains as two of the big challenges for the kinase signaling community. © 2019 IUBMB Life, 71(6):672-684, 2019.


Assuntos
Motivos de Aminoácidos/genética , Eucariotos/genética , Proteínas Quinases/genética , Trifosfato de Adenosina/genética , Domínio Catalítico/genética , Sequência Conservada/genética , Interações Hidrofóbicas e Hidrofílicas , Fosfatos/metabolismo , Proteínas Quinases/química , Transdução de Sinais/genética , Especificidade por Substrato
9.
Biochem Soc Trans ; 46(3): 587-597, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29678954

RESUMO

Allostery is a fundamental regulatory mechanism in biology. Although generally accepted that it is a dynamics-driven process, the exact molecular mechanism of allosteric signal transmission is hotly debated. We argue that allostery is as a part of a bigger picture that also includes fractal-like properties of protein interior, hierarchical protein folding and entropy-driven molecular recognition. Although so far all these phenomena were studied separately, they stem from the same common root: self-organization of polypeptide chains and, thus, has to be studied collectively. This merge will allow the cross-referencing of a broad spectrum of multi-disciplinary data facilitating progress in all these fields.


Assuntos
Entropia , Proteínas/metabolismo , Regulação Alostérica , Fractais , Dobramento de Proteína
10.
J Mol Biol ; 430(6): 881-889, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29410316

RESUMO

Tyrosine kinases are enzymes playing a critical role in cellular signaling. Molecular dynamics umbrella sampling potential of mean force computations are used to quantify the impact of activating and inactivating mutations of c-Src kinase. The potential of mean force computations predict that a specific double mutant can stabilize c-Src kinase into an active-like conformation while disabling the binding of ATP in the catalytic active site. The active-like conformational equilibrium of this catalytically dead kinase is affected by a hydrophobic unit that connects to the hydrophobic spine network via the C-helix. The αC-helix plays a crucial role in integrating the hydrophobic residues, making it a hub for allosteric regulation of kinase activity and the active conformation. The computational free-energy landscapes reported here illustrate novel design principles focusing on the important role of the hydrophobic spines. The relative stability of the spines could be exploited in future efforts to artificially engineer active-like but catalytically dead forms of protein kinases.


Assuntos
Mutação , Conformação Proteica , Quinases da Família src/química , Quinases da Família src/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Catálise , Ativação Enzimática , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética
11.
Metallomics ; 9(11): 1576-1584, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29043344

RESUMO

Protein kinases are key enzymes in the regulation of eukaryotic signal transduction. As metalloenzymes they employ divalent cations for catalysis and regulation. We used the catalytic (C) subunit of cAMP-dependent protein kinase (PKA) as a model protein to investigate the role of a variety of physiologically or pathophysiologically relevant divalent metal ions in distinct steps within the catalytic cycle. It is established that divalent metal ions play a crucial role in co-binding of nucleotides and also assist in catalysis. Our studies reveal that besides the physiologically highly relevant magnesium, metals like zinc and manganese can assist in phosphoryl transfer, however, only a few support efficient substrate turnover (turnover catalysis). Those trace metals allow for substrate binding and phosphotransfer but hamper product release. We further established the unique role of magnesium as the common biologically relevant divalent metal ideally enabling (co-) substrate binding and orientation. Magnesium allows stable substrate binding and, on the other hand accelerates product release, thus being extremely efficient in turnover catalysis. We extended our studies to non-catalytic functions of protein kinases looking at pseudokinases, a subfamily of protein kinases inherently lacking critical residues for catalysis. Recently, pseudokinases have been linked to human diseases. Some pseudokinases are still capable of binding metal ions, yet have lost the ability to transfer the phosphoryl group from ATP to a given substrate. Here metal ions stabilize an active like, though catalytically unproductive conformation and are therefore crucial to maintain non-catalytic function. Finally, we demonstrate for the canonical kinase PKA that the trace metal manganese alone can stabilize protein kinases in an active like conformation allowing them to bind substrates even in the absence of nucleotides.


Assuntos
Cátions Bivalentes/farmacologia , Ensaios Enzimáticos/métodos , Metais/farmacologia , Proteínas Quinases/metabolismo , Biocatálise/efeitos dos fármacos , Cádmio/farmacologia , Cálcio/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Magnésio/farmacologia , Manganês/farmacologia , Nucleotídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Zinco/farmacologia
12.
Sci Adv ; 3(4): e1600663, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28435869

RESUMO

Eukaryotic protein kinases (EPKs) constitute a class of allosteric switches that mediate a myriad of signaling events. It has been postulated that EPKs' active and inactive states depend on the structural architecture of their hydrophobic cores, organized around two highly conserved spines: C-spine and R-spine. How the spines orchestrate the transition of the enzyme between catalytically uncommitted and committed states remains elusive. Using relaxation dispersion nuclear magnetic resonance spectroscopy, we found that the hydrophobic core of the catalytic subunit of protein kinase A, a prototypical and ubiquitous EPK, moves synchronously to poise the C subunit for catalysis in response to binding adenosine 5'-triphosphate. In addition to completing the C-spine, the adenine ring fuses the ß structures of the N-lobe and the C-lobe. Additional residues that bridge the two spines (I150 and V104) are revealed as part of the correlated hydrophobic network; their importance was validated by mutagenesis, which led to inactivation. Because the hydrophobic architecture of the catalytic core is conserved throughout the EPK superfamily, the present study suggests a universal mechanism for dynamically driven allosteric activation of kinases mediated by coordinated signal transmission through ordered motifs in their hydrophobic cores.


Assuntos
Trifosfato de Adenosina/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Modelos Moleculares , Regulação Alostérica , Domínio Catalítico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular
13.
Biochemistry ; 56(10): 1536-1545, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28221775

RESUMO

Close-range electrostatic interactions that form salt bridges are key components of protein stability. Here we investigate the role of these charged interactions in modulating the allosteric activation of protein kinase A (PKA) via computational and experimental mutational studies of a conserved basic patch located in the regulatory subunit's B/C helix. Molecular dynamics simulations evidenced the presence of an extended network of fluctuating salt bridges spanning the helix and connecting the two cAMP binding domains in its extremities. Distinct changes in the flexibility and conformational free energy landscape induced by the separate mutations of Arg239 and Arg241 suggested alteration of cAMP-induced allosteric activation and were verified through in vitro fluorescence polarization assays. These observations suggest a mechanical aspect to the allosteric transition of PKA, with Arg239 and Arg241 acting in competition to promote the transition between the two protein functional states. The simulations also provide a molecular explanation for the essential role of Arg241 in allowing cooperative activation, by evidencing the existence of a stable interdomain salt bridge with Asp267. Our integrated approach points to the role of salt bridges not only in protein stability but also in promoting conformational transition and function.


Assuntos
Arginina/química , Ácido Aspártico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , AMP Cíclico/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Arginina/metabolismo , Ácido Aspártico/metabolismo , Domínio Catalítico , Clonagem Molecular , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sais/química , Alinhamento de Sequência , Eletricidade Estática , Termodinâmica
14.
Proc Natl Acad Sci U S A ; 114(6): E931-E940, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115705

RESUMO

The expertise of protein kinases lies in their dynamic structure, wherein they are able to modulate cellular signaling by their phosphotransferase activity. Only a few hundreds of protein kinases regulate key processes in human cells, and protein kinases play a pivotal role in health and disease. The present study dwells on understanding the working of the protein kinase-molecular switch as an allosteric network of "communities" composed of congruently dynamic residues that make up the protein kinase core. Girvan-Newman algorithm-based community maps of the kinase domain of cAMP-dependent protein kinase A allow for a molecular explanation for the role of protein conformational entropy in its catalytic cycle. The community map of a mutant, Y204A, is analyzed vis-à-vis the wild-type protein to study the perturbations in its dynamic profile such that it interferes with transfer of the γ-phosphate to a protein substrate. Conventional biochemical measurements are used to ascertain the effect of these dynamic perturbations on the kinetic profiles of both proteins. These studies pave the way for understanding how mutations far from the kinase active site can alter its dynamic properties and catalytic function even when major structural perturbations are not obvious from static crystal structures.


Assuntos
Regulação Alostérica , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Mutação , Algoritmos , Sítio Alostérico , Animais , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Entropia , Cinética , Camundongos , Modelos Moleculares , Fosforilação , Conformação Proteica
15.
Cell Rep ; 12(8): 1252-60, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26279568

RESUMO

The signaling output of protein kinase C (PKC) is exquisitely controlled, with its disruption resulting in pathophysiologies. Identifying the structural basis for autoinhibition is central to developing effective therapies for cancer, where PKC activity needs to be enhanced, or neurodegenerative diseases, where PKC activity should be inhibited. Here, we reinterpret a previously reported crystal structure of PKCßII and use docking and functional analysis to propose an alternative structure that is consistent with previous literature on PKC regulation. Mutagenesis of predicted contact residues establishes that the Ca(2+)-sensing C2 domain interacts intramolecularly with the kinase domain and the carboxyl-terminal tail, locking PKC in an inactive conformation. Ca(2+)-dependent bridging of the C2 domain to membranes provides the first step in activating PKC via conformational selection. Although the placement of the C1 domains remains to be determined, elucidation of the structural basis for autoinhibition of PKCßII unveils a unique direction for therapeutically targeting PKC.


Assuntos
Proteína Quinase C beta/química , Sequência de Aminoácidos , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteína Quinase C beta/metabolismo , Estrutura Terciária de Proteína
16.
Nat Commun ; 6: 7588, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26145448

RESUMO

Ligand-induced protein allostery plays a central role in modulating cellular signalling pathways. Here using the conserved cyclic nucleotide-binding domain of protein kinase A's (PKA) regulatory subunit as a prototype signalling unit, we combine long-timescale, all-atom molecular dynamics simulations with Markov state models to elucidate the conformational ensembles of PKA's cyclic nucleotide-binding domain A for the cAMP-free (apo) and cAMP-bound states. We find that both systems exhibit shallow free-energy landscapes that link functional states through multiple transition pathways. This observation suggests conformational selection as the general mechanism of allostery in this canonical signalling domain. Further, we expose the propagation of the allosteric signal through key structural motifs in the cyclic nucleotide-binding domain and explore the role of kinetics in its function. Our approach integrates disparate lines of experimental data into one cohesive framework to understand structure, dynamics and function in complex biological systems.


Assuntos
Regulação Alostérica/fisiologia , Simulação por Computador , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/fisiologia , Modelos Químicos , Microscopia , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Termodinâmica
17.
Biochim Biophys Acta ; 1854(10 Pt B): 1567-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25891902

RESUMO

Eukaryotic protein kinases have evolved to be highly regulated and dynamic molecular switches that are typically kept in an inactive state and then activated in response to extracellular signals. The hallmark signature of an active kinase is a hydrophobic spine called the regulatory (R) spine, which consists of four residues, two in the N-lobe and two in the C-lobe. RS1 is in the catalytic loop, RS2 is the Phe in the DFG motif, RS3 is at the C-terminus of the αC-Helix, and RS4 is at the beginning of ß4. Assembly of the R-spine is typically facilitated by phosphorylation of the Activation Loop. The assembled R-spine brings together all of the functional motifs that are essential for transferring the phosphate from ATP to a tethered protein substrate. This includes the G-Loop, which anchors the ATP, the catalytic loop, the DFG motif fused to the Activation Loop, and the αC-Helix. We focus here on the properties of the αC-Helix showing 1) how residues communicate with different parts of the molecule, 2) how it is recruited to the active site as a consequence of assembling of the R-spine, and 3) how it is regulated by linkers/motifs/proteins that lie outside the conserved kinase core. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Assuntos
Proteínas Quinases/química , Estrutura Secundária de Proteína , Transdução de Sinais/genética , Relação Estrutura-Atividade , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Domínio Catalítico , Eucariotos , Fosforilação , Proteínas Quinases/metabolismo
18.
Mol Cell Biol ; 35(1): 264-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348715

RESUMO

A new model of kinase regulation based on the assembly of hydrophobic spines has been proposed. Changes in their positions can explain the mechanism of kinase activation. Here, we examined mutations in human cancer for clues about the regulation of the hydrophobic spines by focusing initially on mutations to Phe. We identified a selected number of Phe mutations in a small group of kinases that included BRAF, ABL1, and the epidermal growth factor receptor. Testing some of these mutations in BRAF, we found that one of the mutations impaired ATP binding and catalytic activity but promoted noncatalytic allosteric functions. Other Phe mutations functioned to promote constitutive catalytic activity. One of these mutations revealed a previously underappreciated hydrophobic surface that functions to position the dynamic regulatory αC-helix. This supports the key role of the C-helix as a signal integration motif for coordinating multiple elements of the kinase to create an active conformation. The importance of the hydrophobic space around the αC-helix was further tested by studying a V600F mutant, which was constitutively active in the absence of the negative charge that is associated with the common V600E mutation. Many hydrophobic mutations strategically localized along the C-helix can thus drive kinase activation.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/enzimologia , Fosfotransferases/fisiologia , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Catálise , Receptores ErbB/genética , Células HEK293 , Histidina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metionina/química , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-abl/genética
19.
Proc Natl Acad Sci U S A ; 111(43): E4623-31, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25319261

RESUMO

Protein kinases are dynamically regulated signaling proteins that act as switches in the cell by phosphorylating target proteins. To establish a framework for analyzing linkages between structure, function, dynamics, and allostery in protein kinases, we carried out multiple microsecond-scale molecular-dynamics simulations of protein kinase A (PKA), an exemplar active kinase. We identified residue-residue correlated motions based on the concept of mutual information and used the Girvan-Newman method to partition PKA into structurally contiguous "communities." Most of these communities included 40-60 residues and were associated with a particular protein kinase function or a regulatory mechanism, and well-known motifs based on sequence and secondary structure were often split into different communities. The observed community maps were sensitive to the presence of different ligands and provide a new framework for interpreting long-distance allosteric coupling. Communication between different communities was also in agreement with the previously defined architecture of the protein kinase core based on the "hydrophobic spine" network. This finding gives us confidence in suggesting that community analyses can be used for other protein kinases and will provide an efficient tool for structural biologists. The communities also allow us to think about allosteric consequences of mutations that are linked to disease.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Quinases/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Domínio Catalítico , Ligantes , Magnésio/metabolismo , Mutagênese , Reprodutibilidade dos Testes , Moldes Genéticos
20.
Mol Cell Biol ; 34(9): 1538-46, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24567368

RESUMO

Protein kinases are thought to mediate their biological effects through their catalytic activity. The large number of pseudokinases in the kinome and an increasing appreciation that they have critical roles in signaling pathways, however, suggest that catalyzing protein phosphorylation may not be the only function of protein kinases. Using the principle of hydrophobic spine assembly, we interpret how kinases are capable of performing a dual function in signaling. Its first role is that of a signaling enzyme (classical kinases; canonical), while its second role is that of an allosteric activator of other kinases or as a scaffold protein for signaling in a manner that is independent of phosphoryl transfer (classical pseudokinases; noncanonical). As the hydrophobic spines are a conserved feature of the kinase domain itself, all kinases carry an inherent potential to play both roles in signaling. This review focuses on the recent lessons from the RAF kinases that effectively toggle between these roles and can be "frozen" by introducing mutations at their hydrophobic spines.


Assuntos
Quinases raf/química , Quinases raf/metabolismo , Regulação Alostérica , Animais , Ativação Enzimática , Humanos , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Transdução de Sinais , Quinases raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA