Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(7): e0042024, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38780261

RESUMO

Capsid assembly mediated by hepatitis B virus (HBV) core protein (HBc) is an essential part of the HBV replication cycle, which is the target for different classes of capsid assembly modulators (CAMs). While both CAM-A ("aberrant") and CAM-E ("empty") disrupt nucleocapsid assembly and reduce extracellular HBV DNA, CAM-As can also reduce extracellular HBV surface antigen (HBsAg) by triggering apoptosis of HBV-infected cells in preclinical mouse models. However, there have not been substantial HBsAg declines in chronic hepatitis B (CHB) patients treated with CAM-As to date. To investigate this disconnect, we characterized the antiviral activity of tool CAM compounds in HBV-infected primary human hepatocytes (PHHs), as well as in HBV-infected human liver chimeric mice and mice transduced with adeno-associated virus-HBV. Mechanistic studies in HBV-infected PHH revealed that CAM-A, but not CAM-E, induced a dose-dependent aggregation of HBc in the nucleus which is negatively regulated by the ubiquitin-binding protein p62. We confirmed that CAM-A, but not CAM-E, induced HBc-positive cell death in both mouse models via induction of apoptotic and inflammatory pathways and demonstrated that the degree of HBV-positive cell loss was positively correlated with intrahepatic HBc levels. Importantly, we determined that there is a significantly lower level of HBc per hepatocyte in CHB patient liver biopsies than in either of the HBV mouse models. Taken together, these data confirm that CAM-As have a unique secondary mechanism with the potential to kill HBc-positive hepatocytes. However, this secondary mechanism appears to require higher intrahepatic HBc levels than is typically observed in CHB patients, thereby limiting the therapeutic potential.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Hepatócitos , Humanos , Hepatócitos/virologia , Hepatócitos/efeitos dos fármacos , Animais , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Camundongos , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Proteínas do Core Viral/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Fígado/virologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Montagem de Vírus/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
2.
Sci Rep ; 12(1): 21286, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494467

RESUMO

The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) checkpoint blockade is central to Immuno-Oncology based therapies, and alternatives to antibody blockers of this interaction are an active area of research due to antibody related toxicities. Recently, small molecule compounds that induce PD-L1 dimerization and occlusion of PD-1 binding site have been identified and developed for clinical trials. This mechanism invokes an oligomeric state of PD-L1 not observed in cells previously, as PD-L1 is generally believed to function as a monomer. Therefore, understanding the cellular lifecycle of the induced PD-L1 dimer is of keen interest. Our report describes a moderate but consistent increase in the PD-L1 rate of degradation observed upon protein dimerization as compared to the monomer counterpart. This subtle change, while not resolved by measuring total PD-L1 cellular levels by western blotting, triggered investigations of the overall protein distribution across various cellular compartments. We show that PD-L1 dimerization does not lead to rapid internalization of neither transfected nor endogenously expressed protein forms. Instead, evidence is presented that dimerization results in retention of PD-L1 intracellularly, which concomitantly correlates with its reduction on the cell surface. Therefore, the obtained data for the first time points to the ability of small molecules to induce dimerization of the newly synthesized PD-L1 in addition to the protein already present on the plasma membrane. Overall, this work serves to improve our understanding of this important target on a molecular level in order to guide advances in drug development.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Animais , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Imunoterapia/métodos , Estágios do Ciclo de Vida
3.
Nat Struct Mol Biol ; 29(9): 922-931, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097294

RESUMO

In addition to its role in chromosome maintenance, the six-membered Smc5/6 complex functions as a restriction factor that binds to and transcriptionally silences viral and other episomal DNA. However, the underlying mechanism is unknown. Here, we show that transcriptional silencing by the human Smc5/6 complex is a three-step process. The first step is entrapment of the episomal DNA by a mechanism dependent on Smc5/6 ATPase activity and a function of its Nse4a subunit for which the Nse4b paralog cannot substitute. The second step results in Smc5/6 recruitment to promyelocytic leukemia nuclear bodies by SLF2 (the human ortholog of Nse6). The third step promotes silencing through a mechanism requiring Nse2 but not its SUMO ligase activity. By contrast, the related cohesin and condensin complexes fail to bind to or silence episomal DNA, indicating a property unique to Smc5/6.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Sumoilação , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Reparo do DNA , Humanos , Ligases/genética , Ligases/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33229429

RESUMO

Remdesivir (RDV, GS-5734), the first FDA-approved antiviral for the treatment of COVID-19, is a single diastereomer monophosphoramidate prodrug of an adenosine analogue. It is intracellularly metabolized into the active triphosphate form, which in turn acts as a potent and selective inhibitor of multiple viral RNA polymerases. RDV has broad-spectrum activity against members of the coronavirus family, such as SARS-CoV-2, SARS-CoV, and MERS-CoV, as well as filoviruses and paramyxoviruses. To assess the potential for off-target toxicity, RDV was evaluated in a set of cellular and biochemical assays. Cytotoxicity was evaluated in a set of relevant human cell lines and primary cells. In addition, RDV was evaluated for mitochondrial toxicity under aerobic and anaerobic metabolic conditions, and for the effects on mitochondrial DNA content, mitochondrial protein synthesis, cellular respiration, and induction of reactive oxygen species. Last, the active 5'-triphosphate metabolite of RDV, GS-443902, was evaluated for potential interaction with human DNA and RNA polymerases. Among all of the human cells tested under 5 to 14 days of continuous exposure, the 50% cytotoxic concentration (CC50) values of RDV ranged from 1.7 to >20 µM, resulting in selectivity indices (SI, CC50/EC50) from >170 to 20,000, with respect to RDV anti-SARS-CoV-2 activity (50% effective concentration [EC50] of 9.9 nM in human airway epithelial cells). Overall, the cellular and biochemical assays demonstrated a low potential for RDV to elicit off-target toxicity, including mitochondria-specific toxicity, consistent with the reported clinical safety profile.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antivirais/química , COVID-19/virologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Mitocôndrias/efeitos dos fármacos , Cultura Primária de Células
5.
ACS Med Chem Lett ; 11(3): 358-364, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32184970

RESUMO

We describe the discovery of three structurally differentiated potent and selective MTH1 inhibitors and their subsequent use to investigate MTH1 as an oncology target, culminating in target (in)validation. Tetrahydronaphthyridine 5 was rapidly identified as a highly potent MTH1 inhibitor (IC50 = 0.043 nM). Cocrystallization of 5 with MTH1 revealed the ligand in a Φ-cis-N-(pyridin-2-yl)acetamide conformation enabling a key intramolecular hydrogen bond and polar interactions with residues Gly34 and Asp120. Modification of literature compound TH287 with O- and N-linked aryl and alkyl aryl substituents led to the discovery of potent pyrimidine-2,4,6-triamine 25 (IC50 = 0.49 nM). Triazolopyridine 32 emerged as a highly selective lead compound with a suitable in vitro profile and desirable pharmacokinetic properties in rat. Elucidation of the DNA damage response, cell viability, and intracellular concentrations of oxo-NTPs (oxidized nucleoside triphosphates) as a function of MTH1 knockdown and/or small molecule inhibition was studied. Based on our findings, we were unable to provide evidence to further pursue MTH1 as an oncology target.

6.
J Virol ; 93(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167911

RESUMO

The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the host DNA damage-binding protein 1 (DDB1) E3 ubiquitin ligase to target Smc5/6 for degradation. HBx is an attractive therapeutic target for the treatment of chronic hepatitis B (CHB), but it is challenging to study this important viral protein in the context of natural infection due to the lack of a highly specific and sensitive HBx antibody. In this study, we developed a novel monoclonal antibody that enables detection of HBx protein in HBV-infected primary human hepatocytes (PHH) by Western blotting and immunofluorescence. Confocal imaging studies with this antibody demonstrated that HBx is predominantly located in the nucleus of HBV-infected PHH, where it exhibits a diffuse staining pattern. In contrast, a DDB1-binding-deficient HBx mutant was detected in both the cytoplasm and nucleus, suggesting that the DDB1 interaction plays an important role in the nuclear localization of HBx. Our study also revealed that HBx is expressed early after infection and has a short half-life (∼3 h) in HBV-infected PHH. In addition, we found that treatment with small interfering RNAs (siRNAs) that target DDB1 or HBx mRNA decreased HBx protein levels and led to the reappearance of Smc6 in the nuclei of HBV-infected PHH. Collectively, these studies provide the first spatiotemporal analysis of HBx in a natural infection system and also suggest that HBV transcriptional silencing by Smc5/6 can be restored by therapeutic targeting of HBx.IMPORTANCE Hepatitis B virus X protein (HBx) is a promising drug target since it promotes the degradation of the host structural maintenance of chromosomes 5/6 complex (Smc5/6) that inhibits HBV transcription. To date, it has not been possible to study HBx in physiologically relevant cell culture systems due to the lack of a highly specific and selective HBx antibody. In this study, we developed a novel monoclonal HBx antibody and performed a spatiotemporal analysis of HBx in a natural infection system. This revealed that HBx localizes to the nucleus of infected cells, is expressed shortly after infection, and has a short half-life. In addition, we demonstrated that inhibiting HBx expression or function promotes the reappearance of Smc6 in the nucleus of infected cells. These data provide new insights into HBx and underscore its potential as a novel target for the treatment of chronic HBV infection.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Hepatócitos/virologia , Transativadores/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Proteínas de Ligação a DNA/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Expressão Gênica , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Transporte Proteico , Transativadores/química , Transativadores/genética , Transativadores/imunologia , Proteínas Virais Reguladoras e Acessórias
7.
Am J Physiol Cell Physiol ; 301(3): C577-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21677263

RESUMO

Late Na(+) current (I(NaL)) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) are both increased in the diseased heart. Recently, CaMKII was found to phosphorylate the Na(+) channel 1.5 (Na(v)1.5), resulting in enhanced I(NaL). Conversely, an increase of I(NaL) would be expected to cause elevation of intracellular Ca(2+) and activation of CaMKII. However, a relationship between enhancement of I(NaL) and activation of CaMKII has yet to be demonstrated. We investigated whether Na(+) influx via Na(v)1.5 leads to CaMKII activation and explored the functional significance of this pathway. In neonatal rat ventricular myocytes (NRVM), treatment with the I(NaL) activators anemone toxin II (ATX-II) or veratridine increased CaMKII autophosphorylation and increased phosphorylation of CaMKII substrates phospholamban and ryanodine receptor 2. Knockdown of Na(v)1.5 (but not Na(v)1.1 or Na(v)1.2) prevented ATX-II-induced CaMKII phosphorylation, providing evidence for a specific role of Na(v)1.5 in CaMKII activation. In support of this view, CaMKII activity was also increased in hearts of transgenic mice overexpressing a gain-of-function Na(v)1.5 mutant (N(1325)S). The effects of both ATX-II and the N(1325)S mutation were reversed by either I(NaL) inhibition (with ranolazine or tetrodotoxin) or CaMKII inhibition (with KN93 or autocamtide 2-related inhibitory peptide). Furthermore, ATX-II treatment also induced CaMKII-Na(v)1.5 coimmunoprecipitation. The same association between CaMKII and Na(v)1.5 was also found in N(1325)S mice, suggesting a direct protein-protein interaction. Pharmacological inhibitions of either CaMKII or I(NaL) also prevented ATX-II-induced cell death in NRVM and reduced the incidence of polymorphic ventricular tachycardia induced by ATX-II in rat perfused hearts. Taken together, these results suggest that a Na(v)1.5-dependent increase in Na(+) influx leads to activation of CaMKII, which in turn phosphorylates Na(v)1.5, further promoting Na(+) influx. Pharmacological inhibition of either CaMKII or Na(v)1.5 can ameliorate cardiac dysfunction caused by excessive Na(+) influx.


Assuntos
Substituição de Aminoácidos/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Acetanilidas/farmacologia , Acetanilidas/uso terapêutico , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Venenos de Cnidários/farmacologia , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Perfusão , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , RNA Interferente Pequeno/genética , Coelhos , Ranolazina , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Sódio/genética , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/metabolismo , Taquicardia Ventricular/induzido quimicamente , Taquicardia Ventricular/prevenção & controle , Tetrodotoxina/farmacologia , Veratridina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA