Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 10: 614288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33598432

RESUMO

Angiosarcoma is a rare cancer of blood vessel-forming cells with a high patient mortality and few treatment options. Although chemotherapy often produces initial clinical responses, outcomes remain poor, largely due to the development of drug resistance. We previously identified a subset of doxorubicin-resistant cells in human angiosarcoma and canine hemangiosarcoma cell lines that exhibit high lysosomal accumulation of doxorubicin. Hydrophobic, weak base chemotherapeutics, like doxorubicin, are known to sequester within lysosomes, promoting resistance by limiting drug accessibility to cellular targets. Drug synergy between the beta adrenergic receptor (ß-AR) antagonist, propranolol, and multiple chemotherapeutics has been documented in vitro, and clinical data have corroborated the increased therapeutic potential of propranolol with chemotherapy in angiosarcoma patients. Because propranolol is also a weak base and accumulates in lysosomes, we sought to determine whether propranolol enhanced doxorubicin cytotoxicity via antagonism of ß-ARs or by preventing the lysosomal accumulation of doxorubicin. ß-AR-like immunoreactivities were confirmed in primary tumor tissues and cell lines; receptor function was verified by monitoring downstream signaling pathways of ß-ARs in response to receptor agonists and antagonists. Mechanistically, propranolol increased cytoplasmic doxorubicin concentrations in sarcoma cells by decreasing the lysosomal accumulation and cellular efflux of this chemotherapeutic agent. Equivalent concentrations of the receptor-active S-(-) and -inactive R-(+) enantiomers of propranolol produced similar effects, supporting a ß-AR-independent mechanism. Long-term exposure of hemangiosarcoma cells to propranolol expanded both lysosomal size and number, yet cells remained sensitive to doxorubicin in the presence of propranolol. In contrast, removal of propranolol increased cellular resistance to doxorubicin, underscoring lysosomal doxorubicin sequestration as a key mechanism of resistance. Our results support the repurposing of the R-(+) enantiomer of propranolol with weak base chemotherapeutics to increase cytotoxicity and reduce the development of drug-resistant cell populations without the cardiovascular and other side effects associated with antagonism of ß-ARs.

2.
Vet Comp Oncol ; 18(3): 324-341, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31661586

RESUMO

Monocarboxylate transporters (MCTs) support tumour growth by regulating the transport of metabolites in the tumour microenvironment. High MCT1 or MCT4 expression is correlated with poor outcomes in human patients with head and neck squamous cell carcinoma (HNSCC). Recently, drugs targeting these transporters have been developed and may prove to be an effective treatment strategy for HNSCC. Feline oral squamous cell carcinoma (OSCC) is an aggressive and treatment-resistant malignancy resembling advanced or recurrent HNSCC. The goals of this study were to investigate the effects of a previously characterized dual MCT1 and MCT4 inhibitor, MD-1, in OSCC as a novel treatment approach for feline oral cancer. We also sought to determine the potential of feline OSCC as a large animal model for the further development of MCT inhibitors to treat human HNSCC. In vitro, MD-1 reduced the viability of feline OSCC and human HNSCC cell lines, altered glycolytic and mitochondrial metabolism and synergized with platinum-based chemotherapies. While MD-1 treatment increased lactate concentrations in an HNSCC cell line, the inhibitor failed to alter lactate levels in feline OSCC cells, suggesting an MCT-independent activity. In vivo, MD-1 significantly inhibited tumour growth in a subcutaneous xenograft model and prolonged overall survival in an orthotopic model of feline OSCC. Our results show that MD-1 may be an effective therapy for the treatment of feline oral cancer. Our findings also support the further investigation of feline OSCC as a large animal model to inform the development of MCT inhibitors and future clinical studies in human HNSCC.


Assuntos
Doenças do Gato/tratamento farmacológico , Proteínas Mitocondriais/farmacologia , Transportadores de Ácidos Monocarboxílicos/farmacologia , Neoplasias Bucais/veterinária , Carcinoma de Células Escamosas de Cabeça e Pescoço/veterinária , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/farmacologia , Animais , Gatos , Linhagem Celular Tumoral , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Bucais/tratamento farmacológico , Proteínas Musculares/genética , Proteínas Musculares/farmacologia , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
3.
PLoS One ; 7(9): e43720, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957032

RESUMO

Downregulation of microRNAs (miRNAs) at the 14q32 locus stabilizes the expression of cMYC, thus significantly contributing to osteosarcoma (OS) pathobiology. Here, we show that downregulation of 14q32 miRNAs is epigenetically regulated. The predicted promoter regions of miRNA clusters at 14q32 locus showed no recurrent patterns of differential methylation, but Saos2 cells showed elevated histone deacetylase (HDAC) activity. Treatment with 4-phenylbutyrate increased acetylation of histones associated with 14q32 miRNAs, but interestingly, robust restoration of 14q32 miRNA expression, attenuation of cMYC expression, and induction of apoptosis required concomitant treatment with 5-Azacytidine, an inhibitor of DNA methylation. These events were associated with genome-wide gene expression changes including induction of pro-apoptotic genes and downregulation of cell cycle genes. Comparable effects were achieved in human and canine OS cells using the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat) and the DNA methylation inhibitor Zebularine (Zeb), with significantly more pronounced cytotoxicity in cells whose molecular phenotypes were indicative of aggressive biological behavior. These results suggested that the combination of these chromatin-modifying drugs may be a useful adjuvant in the treatment of rapidly progressive OS.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cromatina/metabolismo , DNA/metabolismo , Osteossarcoma/tratamento farmacológico , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Citidina/análogos & derivados , Citidina/farmacologia , Metilação de DNA , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Vorinostat
4.
Toxicol Appl Pharmacol ; 242(3): 299-309, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19896492

RESUMO

The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.


Assuntos
Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Linfócitos T/efeitos dos fármacos , Humanos , Células Jurkat , Leucemia de Células T/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA