Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 118(12): 2703-2717, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34550322

RESUMO

AIMS: Intimal hyperplasia is a common feature of vascular remodelling disorders. Accumulation of synthetic smooth muscle cell (SMC)-like cells is the main underlying cause. Current therapeutic approaches including drug-eluting stents are not perfect due to the toxicity on endothelial cells and novel therapeutic strategies are needed. Our preliminary screening for dysregulated cyclic nucleotide phosphodiesterases (PDEs) in growing SMCs revealed the alteration of PDE10A expression. Herein, we investigated the function of PDE10A in SMC proliferation and intimal hyperplasia both in vitro and in vivo. METHODS AND RESULTS: RT-qPCR, immunoblot, and in situ proximity ligation assay were performed to determine PDE10A expression in synthetic SMCs and injured vessels. We found that PDE10A mRNA and/or protein levels are up-regulated in cultured SMCs upon growth stimulation, as well as in intimal cells in injured mouse femoral arteries. To determine the cellular functions of PDE10A, we focused on its role in SMC proliferation. The anti-mitogenic effects of PDE10A on SMCs were evaluated via cell counting, BrdU incorporation, and flow cytometry. We found that PDE10A deficiency or inhibition arrested the SMC cell cycle at G1-phase with a reduction of cyclin D1. The anti-mitotic effect of PDE10A inhibition was dependent on cGMP-dependent protein kinase Iα (PKGIα), involving C-natriuretic peptide (CNP) and particulate guanylate cyclase natriuretic peptide receptor 2 (NPR2). In addition, the effects of genetic depletion and pharmacological inhibition of PDE10A on neointimal formation were examined in a mouse model of femoral artery wire injury. Both PDE10A knockout and inhibition decreased injury-induced intimal thickening in femoral arteries by at least 50%. Moreover, PDE10A inhibition decreased ex vivo remodelling of cultured human saphenous vein segments. CONCLUSIONS: Our findings indicate that PDE10A contributes to SMC proliferation and intimal hyperplasia at least partially via antagonizing CNP/NPR2/cGMP/PKG1α signalling and suggest that PDE10A may be a novel drug target for treating vascular occlusive disease.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Animais , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacologia , Proliferação de Células , Células Cultivadas , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Ciclina D1/metabolismo , Células Endoteliais/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Diester Fosfórico Hidrolases/metabolismo , RNA Mensageiro/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/tratamento farmacológico , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo
2.
JCI Insight ; 52019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30998506

RESUMO

The bone marrow microenvironment (BMME) contributes to the regulation of hematopoietic stem cell (HSC) function, though its role in age-associated lineage skewing is poorly understood. Here we show that dysfunction of aged marrow macrophages (Mφs) directs HSC platelet-bias. Mφs from the marrow of aged mice and humans exhibited an activated phenotype, with increased expression of inflammatory signals. Aged marrow Mφs also displayed decreased phagocytic function. Senescent neutrophils, typically cleared by marrow Mφs, were markedly increased in aged mice, consistent with functional defects in Mφ phagocytosis and efferocytosis. In aged mice, Interleukin 1B (IL1B) was elevated in the bone marrow and caspase 1 activity, which can process pro-IL1B, was increased in marrow Mφs and neutrophils. Mechanistically, IL1B signaling was necessary and sufficient to induce a platelet bias in HSCs. In young mice, depletion of phagocytic cell populations or loss of the efferocytic receptor Axl expanded platelet-biased HSCs. Our data support a model wherein increased inflammatory signals and decreased phagocytic function of aged marrow Mφs induce the acquisition of platelet bias in aged HSCs. This work highlights the instructive role of Mφs and IL1B in the age-associated lineage-skewing of HSCs, and reveals the therapeutic potential of their manipulation as antigeronic targets.


Assuntos
Envelhecimento/fisiologia , Plaquetas/metabolismo , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Animais , Medula Óssea/patologia , Caspase 1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos , Fagocitose , Fenótipo , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Receptor Tirosina Quinase Axl
3.
Am J Pathol ; 188(8): 1794-1806, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30033030

RESUMO

The balance between adaptive and innate immunity in kidney damage in salt-dependent hypertension is unclear. We investigated early renal dysfunction and the influence of Axl, a receptor tyrosine kinase, on innate immune response in hypertensive kidney in mice with lymphocyte deficiency (Rag1-/-). The data suggest that increased presence of CD11b+ myeloid cells in the medulla might explain intensified salt and water retention as well as initial hypertensive response in Rag1-/- mice. Global deletion of Axl on Rag1-/- background reversed kidney dysfunction and accumulation of myeloid cells in the kidney medulla. Chimeric mice that lack Axl in innate immune cells (in the absence of lymphocytes) significantly improved kidney function and abolished early hypertensive response. The bioinformatics analyses of Axl-related gene-gene interaction networks established tissue-specific variation in regulatory pathways. It was confirmed that complement C3 is important for Axl-mediated interactions between myeloid and vascular cells in hypertensive kidney. In summary, innate immunity is crucial for renal dysfunction in early hypertension, and is highly influenced by the presence of Axl.


Assuntos
Hipertensão/imunologia , Imunidade Inata/imunologia , Nefropatias/imunologia , Linfócitos/imunologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Animais , Células Cultivadas , Complemento C3/metabolismo , Proteínas de Homeodomínio/fisiologia , Hipertensão/metabolismo , Hipertensão/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor Tirosina Quinase Axl
4.
Sci Rep ; 7(1): 12081, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935983

RESUMO

Increased arterial thickness measured with ultrasound correlates with future cardiovascular events, but conventional ultrasound imaging techniques cannot distinguish between intima, media, or atherosclerotic plaque in the carotid artery. In this work, we evaluated how well vascular elastography can detect intimal changes in a mouse model of carotid remodeling. We ligated the left external and internal branches of the carotid artery of male FVB mice and performed sham operations for 2 weeks. High-resolution ultrasound imaging accurately detected lower blood velocities and low blood volume flow in the carotid arteries after ligation in FVB mice. However, ultrasound could not detect differences in the carotid wall even at 2 weeks post-surgery. The Young's modulus was measured based on displacements of the carotid artery wall, and Young's modulus was 2-fold greater in shams at 1 week post ligation, and 3-fold greater 2 weeks after ligation. Finally, the higher Young's modulus was most associated with higher intimal thickness but not medial or adventitial thickness as measured by histology. In conclusion, we developed a robust ultrasound-based elastography method for early detection of intimal changes in small animals.


Assuntos
Artérias Carótidas/fisiologia , Módulo de Elasticidade/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Remodelação Vascular/fisiologia , Algoritmos , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/cirurgia , Espessura Intima-Media Carotídea , Ligadura , Masculino , Camundongos Endogâmicos , Modelos Cardiovasculares , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/fisiopatologia , Ultrassonografia/métodos
5.
Arterioscler Thromb Vasc Biol ; 36(8): 1638-1646, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27365404

RESUMO

OBJECTIVE: Survival of immune and nonimmune cells relies on Axl, a receptor tyrosine kinase, which is implicated in hypertension. Activated T lymphocytes are involved in regulation of high blood pressure. The goal of the study was to investigate the role of Axl in T-lymphocyte functions and its contribution to salt-dependent hypertension. APPROACH AND RESULTS: We report increased apoptosis in peripheral blood from Axl(-/-) mice because of lower numbers of white blood cells mostly lymphocytes. In vitro studies showed modest reduction in interferon gamma production in Axl(-/-) type 1 T helper cells. Axl did not affect basic proliferation capacity or production of interleukin 4 in Axl(-/-) type 2 T helper cells. However, competitive repopulation of Axl(-/-) bone marrow or adoptive transfer of Axl(-/-) CD4(+) T cells to Rag1(-/-) mice showed robust effect of Axl on T lymphocyte expansion in vivo. Adoptive transfer of Axl(-/-) CD4(+) T cells was protective in a later phase of deoxycorticosterone-acetate and salt hypertension. Reduced numbers of CD4(+) T cells in circulation and in perivascular adventitia decreased vascular remodeling and increased vascular apoptosis in the late phase of hypertension. CONCLUSIONS: These findings suggest that Axl is critical for survival of T lymphocytes, especially during vascular remodeling in hypertension.


Assuntos
Apoptose , Pressão Sanguínea , Linfócitos T CD4-Positivos/enzimologia , Hipertensão/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Cloreto de Sódio na Dieta , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/transplante , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Genótipo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Interferon gama/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária , Masculino , Camundongos Knockout , Fenótipo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Fatores de Tempo , Remodelação Vascular , Receptor Tirosina Quinase Axl
6.
Am J Physiol Heart Circ Physiol ; 309(6): H1048-58, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26276821

RESUMO

The pathophysiological mechanisms of the immune activation of smooth muscle cells are not well understood. Increased expression of Axl, a receptor tyrosine kinase, was recently found in arteries from patients after coronary bypass grafts. In the present study, we hypothesized that Axl-dependent immune activation of smooth muscle cells regulates vein graft remodeling. We observed a twofold decrease in intimal thickening after vascular and systemic depletion of Axl in vein grafts. Local depletion of Axl had the greatest effect on immune activation, whereas systemic deletion of Axl reduced intima due to an increase in apoptosis in vein grafts. Primary smooth muscle cells isolated from Axl knockout mice had reduced proinflammatory responses by prevention of the STAT1 pathway. The absence of Axl increased suppressor of cytokine signaling (SOCS)1 expression in smooth muscle cells, a major inhibitory protein for STAT1. Ultrasound imaging suggested that vascular depletion of Axl reduced vein graft stiffness. Axl expression determined the STAT1-SOCS1 balance in vein graft intima and progression of the remodeling. The results of this investigation demonstrate that Axl promotes STAT1 signaling via inhibition of SOCS1 in activated smooth muscle cells in vein graft remodeling.


Assuntos
Músculo Liso Vascular/imunologia , Miócitos de Músculo Liso/imunologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT1/imunologia , Proteínas Supressoras da Sinalização de Citocina/imunologia , Remodelação Vascular/imunologia , Rigidez Vascular/imunologia , Animais , Aorta/citologia , Apoptose , Artérias Carótidas/imunologia , Artérias Carótidas/metabolismo , Artérias Carótidas/cirurgia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Transcriptoma , Túnica Íntima/imunologia , Túnica Íntima/metabolismo , Veia Cava Inferior/imunologia , Veia Cava Inferior/metabolismo , Veia Cava Inferior/transplante , Receptor Tirosina Quinase Axl
7.
World J Gastroenterol ; 21(14): 4126-35, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25892862

RESUMO

AIM: Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. METHODS: Wild type, inducible nitric oxide synthase (iNOS)(-/-) and endothelial nitric oxide synthase (eNOS)(-/-) mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). RESULTS: SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS(-/-) PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS(-/-) PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS(-/-) or iNOS(-/-) mice. Thalidomide acutely increased plasma NOx in wild type and eNOS(-/-) mice but not iNOS(-/-) mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, eNOS(-/-) and iNOS(-/-) PVL mice, after which time levels returned to the respective baseline. CONCLUSION: Thalidomide does not reduce portal pressure in the murine PVL model by modulation of NO biosynthesis. Rather, thalidomide reduces PHT by decreasing MAP by an undetermined mechanism.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Hipertensão Portal/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Pressão na Veia Porta/efeitos dos fármacos , Talidomida/farmacologia , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/fisiopatologia , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Hipertensão Portal/enzimologia , Hipertensão Portal/genética , Hipertensão Portal/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitratos/sangue , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Células RAW 264.7 , Fluxo Sanguíneo Regional , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
8.
Hypertension ; 62(2): 302-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23774230

RESUMO

The Gas6/Axl pathway regulates many cell functions and is implicated in hypertension. In this study, we aimed to investigate the role of Axl in immune cells on initiation and progression of salt-dependent hypertension. Deoxycorticosterone acetate (75 mg/60 days release)-salt hypertension was induced for 1 week or 6 weeks in Axl chimeras generated by bone marrow transplant to restrict Axl deficiency to hematopoietic or nonhematopoietic compartments. Depletion of Axl in hematopoietic cells (Axl(-/-) →Axl(+/+)) reduced (133 ± 2 mm Hg) increase in systolic blood pressure compared with other Axl chimeras (≈150 mm Hg) 1 week after deoxycorticosterone acetate-salt. Urine protein and renal oxidative stress were lowest in Axl(-/-) →Axl(+/+) at 1 week after deoxycorticosterone acetate-salt. Compensatory increase in Gas6 in kidneys of recipient Axl(-/-) may affect kidney function and blood pressure in early phase of hypertension. Flow cytometry on kidneys from Axl(-/-) →Axl(+/+) showed increase in total leukocytes, B, and dendritic cells and decrease in macrophages compared with Axl(+/+) →Axl(+/+). These immune changes were associated with decrease in proinflammatory gene expression, in particular interferon γ. Systolic blood pressure returned to baseline in Axl(-/-) →Axl(+/+) and Axl(-/-) →Axl(-/-) but remained increased in Axl(+/+) →Axl(+/+) and Axl(+/+) →Axl(-/-) chimeras after 6 weeks of deoxycorticosterone acetate-salt. Vascular apoptosis was increased in the global Axl(-/-) chimeras in the late phase of hypertension. In summary, we found that expression of Axl in hematopoietic cells is critical for kidney pathology in early phase of salt-dependent hypertension. However, Axl in both hematopoietic and nonhematopoietic lineages contributes to the late phase of hypertension.


Assuntos
Desoxicorticosterona/farmacologia , Hipertensão/complicações , Nefrite/etiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Animais , Movimento Celular , Quimiocinas/imunologia , Citocinas/genética , Progressão da Doença , Hipertensão/patologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Rim/imunologia , Rim/patologia , Leucócitos/fisiologia , Masculino , Camundongos , Receptor Tirosina Quinase Axl
9.
Circulation ; 126(20): 2418-27, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23065385

RESUMO

BACKGROUND: Carotid intima-media thickening is associated with increased cardiovascular risk in humans. We discovered that intima formation and cell proliferation in response to carotid injury is greater in SJL/J (SJL) in comparison with C3HeB/FeJ (C3H/F) mice. The purpose of this study was to identify candidate genes contributing to intima formation. METHODS AND RESULTS: We performed microarray and bioinformatic analyses of carotid arteries from C3H/F and SJL mice. Kyoto Encyclopedia of Genes and Genomes analysis showed that the ribosome pathway was significantly up-regulated in C3H/F in comparison with SJL mice. Expression of a ribosomal protein, RpL17, was >40-fold higher in C3H/F carotids in comparison with SJL. Aortic vascular smooth muscle cells from C3H/F grew slower in comparison to SJL. To determine the role of RpL17 in vascular smooth muscle cell growth regulation, we analyzed the relationship between RpL17 expression and cell cycle progression. Cultured vascular smooth muscle cells from mice, rats, and humans showed that RpL17 expression inversely correlated with growth as shown by decreased cells in S phase and increased cells in G(0)/G(1). To prove that RpL17 acted as a growth inhibitor in vivo, we used pluronic gel delivery of RpL17 small interfering RNA to C3H/F carotid arteries. This resulted in an 8-fold increase in the number of proliferating cells. Furthermore, following partial carotid ligation in SJL mice, RpL17 expression in the intima and media decreased, but the number of proliferating cells increased. CONCLUSIONS: RpL17 acts as a vascular smooth muscle cell growth inhibitor (akin to a tumor suppressor) and represents a potential therapeutic target to limit carotid intima-media thickening.


Assuntos
Artérias Carótidas/citologia , Artérias Carótidas/fisiologia , Proliferação de Células , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Proteínas Ribossômicas/fisiologia , Túnica Íntima/citologia , Animais , Ciclo Celular/fisiologia , Células Cultivadas , Biologia Computacional , Fase G1/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos , Análise em Microsséries , Ratos , Fase de Repouso do Ciclo Celular/fisiologia , Fase S/fisiologia , Túnica Íntima/fisiologia , Túnica Média/citologia , Túnica Média/fisiologia
10.
Am J Pathol ; 180(5): 2134-43, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22538191

RESUMO

Cellular mechanisms of carotid intima-media thickening (IMT) are largely unknown. The receptor tyrosine kinase Axl is essential for function of both bone marrow (BM) and non-BM cells. We studied the mechanisms by which Axl expression in BM-derived cells (compared with non-BM-derived cells) mediates carotid IMT. Partial ligation of the left carotid artery resulted in a similar carotid blood flow reduction in Axl chimeras. Neither irradiation nor bone marrow transplantation had any effect on the 40% difference in carotid IMT between Axl genotypes. Axl-dependent survival is very important for intimal leukocytes; however, Axl expression in BM cells contributes to <30% of carotid IMT. Axl in non-BM cells has a greater effect on carotid remodeling. Expression of Axl in non-BM cells is crucial for the up-regulation of several key proinflammatory signals (eg, IL-1) in the carotid. We found that Axl is involved in immune activation of cultured smooth muscle cells and in immune heterogeneity of medial cells (measured by major histocompatibility complex class II) after carotid injury. Finally, a lack of Axl in non-BM cells increased collagen Iα expression, which may play a critical role in carotid remodeling. Our data suggest that Axl contributes to carotid remodeling not only by inhibition of apoptosis but also via regulation of immune heterogeneity of vascular cells, cytokine/chemokine expression, and extracellular matrix remodeling.


Assuntos
Artérias Carótidas/imunologia , Espessura Intima-Media Carotídea , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Células Cultivadas , Quimiocinas/metabolismo , Colágeno/metabolismo , Citocinas/biossíntese , Matriz Extracelular/metabolismo , Genótipo , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/imunologia , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Quimeras de Transplante , Túnica Íntima/imunologia , Receptor Tirosina Quinase Axl
11.
Curr Opin Nephrol Hypertens ; 21(2): 122-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22240445

RESUMO

PURPOSE OF REVIEW: This review summarizes the recent advances in molecular mechanisms by which five classes of receptor tyrosine kinases (RTKs) contribute to vascular remodeling. RECENT FINDINGS: Recent findings have expanded our knowledge regarding RTK regulation. In particular, G-protein-coupled receptors, mineralocorticoid receptors, mechanical and oxidative stresses transactivate RTKs. These receptors are highly interactive with many downstream targets (including tyrosine kinases and other RTKs) and function as key regulatory nodes in a dynamic signaling network. Interactions between vascular and nonvascular (immune and neuronal) cells are controlled by RTKs in vascular remodeling. Inhibition of RTKs could be an advantageous therapeutic strategy for vascular disorders. SUMMARY: RTK-dependent signaling is important for regulation of key functions during vascular remodeling. However, current challenges are related to integration of the data on multiple RTKs in vascular pathology.


Assuntos
Vasos Sanguíneos/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Vasos Sanguíneos/patologia , Receptores ErbB/metabolismo , Humanos , Hipertensão/etiologia , Hipertensão/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores de Somatomedina/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Clin Sci (Lond) ; 122(8): 361-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22187964

RESUMO

Axl is a receptor tyrosine kinase that was originally cloned from cancer cells. Axl belongs to the TAM (Tyro3, Axl and Mertk) family of receptor tyrosine kinases. Gas6 (growth-arrest-specific protein 6) is a ligand for Axl. Activation of Axl protects cells from apoptosis, and increases migration, aggregation and growth through multiple downstream pathways. Up-regulation of the Gas6/Axl pathway is more evident in pathological conditions compared with normal physiology. Recent advances in Axl receptor biology are summarized in the present review. The emphasis is given to translational aspects of Axl-dependent signalling under pathological conditions. In particular, inhibition of Axl reduces tumorigenesis and prevents metastasis as well. Axl-dependent signals are important for the progression of cardiovascular diseases. In contrast, deficiency of Axl in innate immune cells contributes to the pathogenesis of autoimmune disorders. Current challenges in Axl biology are related to the functional interactions of Axl with other members of the TAM family or other tyrosine kinases, mechanisms of ligand-independent activation, inactivation of the receptor and cell-cell interactions (with respect to immune cells) in chronic diseases.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Doenças Cardiovasculares/metabolismo , Humanos , Doenças do Sistema Imunitário/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor Tirosina Quinase Axl
13.
Hypertension ; 56(1): 105-11, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20479336

RESUMO

In vascular smooth muscle cells, Axl is a key receptor tyrosine kinase, because it is upregulated in injury, increases migration and neointima formation, and is activated by reactive oxygen species. Reaction of glutathione with cysteine residues (termed "glutathiolation") is an important posttranslational redox modification that may alter protein activity and protein-protein interactions. To investigate the mechanisms by which reactive oxygen species increase Axl-dependent vascular smooth muscle cell function we assayed for glutathiolated proteins that associated with Axl in a redox-dependent manner. We identified glutathiolated nonmuscle myosin heavy chain (MHC)-IIB as a novel Axl interacting protein. This interaction was specific in that other myosins did not interact with Axl. The endogenous ligand for Axl, Gas6, increased production of reactive oxygen species in vascular smooth muscle cells and also increased the association of Axl with MHC-IIB. Antioxidants ebselen and N-acetylcysteine decreased the association of Axl with MHC-IIB in response to both Gas6 and reactive oxygen species. Blocking the Axl-MHC-IIB interaction with the specific myosin II inhibitor blebbistatin decreased phosphorylation of Axl and activation of extracellular signal-regulated kinase 1/2 and Akt. Association of MHC-IIB with Axl was increased in balloon-injured rat carotid vessels. Finally, expression of MHC-IIB was upregulated in the neointima of the carotid artery after balloon injury similar to upregulation of Axl protein expression, as shown in our previous studies. These results demonstrate a novel interaction between Axl and MHC-IIB in response to reactive oxygen species. This interaction provides a direct link between Axl and molecular motors crucial for directed cell migration, which may mediate increased migration in vascular dysfunction.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Músculo Liso Vascular/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Western Blotting , Doenças das Artérias Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Imuno-Histoquímica , Imunoprecipitação , Masculino , Músculo Liso Vascular/patologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor Tirosina Quinase Axl
14.
Arterioscler Thromb Vasc Biol ; 29(7): 1074-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19407246

RESUMO

OBJECTIVE: Fibronectin is an important regulator of cell migration, differentiation, growth, and survival. Our data show that fibronectin also plays an important role in regulating extracellular matrix (ECM) remodeling. Fibronectin circulates in the plasma and is also deposited into the ECM by a cell dependent process. To determine whether fibronectin affects vascular remodeling in vivo, we asked whether the fibronectin polymerization inhibitor, pUR4, inhibits intima-media thickening, and prevents excess ECM deposition in arteries using a mouse model of vascular remodeling. METHODS AND RESULTS: To induce vascular remodeling, partial ligation of the left external and internal carotid arteries was performed in mice. pUR4 and the control peptide were applied periadventitially in pluronic gel immediately after surgery. Animals were euthanized 7 or 14 days after surgery. Morphometric analysis demonstrated that the pUR4 fibronectin inhibitor reduced carotid intima (63%), media (27%), and adventitial thickening (40%) compared to the control peptide (III-11C). Treatment with pUR4 also resulted in a dramatic decrease in leukocyte infiltration into the vessel wall (80%), decreased ICAM-1 and VCAM-1 levels, inhibited cell proliferation (60% to 70%), and reduced fibronectin and collagen I accumulation in the vessel wall. In addition, the fibronectin inhibitor prevented SMC phenotypic modulation, as evidenced by the maintenance of smooth muscle (SM) alpha-actin and SM myosin heavy chain levels in medial cells. CONCLUSIONS: These data are the first to demonstrate that fibronectin plays an important role in regulating the vascular remodeling response. Collectively, these data suggest a therapeutic benefit of periadventitial pUR4 in reducing pathological vascular remodeling.


Assuntos
Estenose das Carótidas/fisiopatologia , Fibronectinas/fisiologia , Túnica Íntima/fisiopatologia , Animais , Artéria Carótida Primitiva , Fibronectinas/antagonistas & inibidores , Hemorreologia/fisiologia , Camundongos , Miócitos de Músculo Liso , Túnica Íntima/lesões , Túnica Média/fisiopatologia
15.
Circ Res ; 104(1): 69-78, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19023129

RESUMO

Bcr is a serine/threonine kinase activated by platelet-derived growth factor that is highly expressed in the neointima after vascular injury. Here, we demonstrate that Bcr is an important mediator of angiotensin (Ang) II and platelet-derived growth factor-mediated inflammatory responses in vascular smooth muscle cells (VSMCs). Among transcription factors that might regulate Ang II-mediated inflammatory responses we found that ligand-mediated peroxisome proliferator-activated receptor (PPAR)gamma transcriptional activity was significantly decreased by Ang II. Ang II increased Bcr expression and kinase activity. Overexpression of Bcr significantly inhibited PPARgamma activity. In contrast, knockdown of Bcr using Bcr small interfering RNA and a dominant-negative form of Bcr (DN-Bcr) reversed Ang II-mediated inhibition of PPARgamma activity significantly, suggesting the critical role of Bcr in Ang II-mediated inhibition of PPARgamma activity. Point-mutation and in vitro kinase analyses showed that PPARgamma was phosphorylated by Bcr at serine 82. Overexpression of wild-type Bcr kinase did not inhibit ligand-mediated PPARgamma1 S82A mutant transcriptional activity, indicating that Bcr regulates PPARgamma activity via S82 phosphorylation. DN-Bcr and Bcr small interfering RNA inhibited Ang II-mediated nuclear factor kappaB activation in VSMCs. DN-PPARgamma reversed DN-Bcr-mediated inhibition of nuclear factor kappaB activation, suggesting that PPARgamma is downstream from Bcr. Intimal proliferation in low-flow carotid arteries was decreased in Bcr knockout mice compared with wild-type mice, suggesting the critical role of Bcr kinase in VSMC proliferation in vivo, at least in part, via regulating PPARgamma/nuclear factor kappaB transcriptional activity.


Assuntos
Angiotensina II/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcr/fisiologia , Angiotensina II/farmacologia , Animais , Ativação Enzimática , Camundongos , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NF-kappa B/genética , NF-kappa B/fisiologia , PPAR gama/agonistas , PPAR gama/fisiologia , Fosforilação , Fosfosserina/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Mutação Puntual , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcr/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcr/deficiência , Proteínas Proto-Oncogênicas c-bcr/genética , RNA Interferente Pequeno/farmacologia , Ratos , Proteínas Recombinantes de Fusão/fisiologia , Túnica Íntima/enzimologia , Túnica Íntima/patologia , Vasculite/fisiopatologia
16.
Hypertension ; 50(6): 1057-62, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17923589

RESUMO

Axl, a receptor tyrosine kinase, was recently identified as a novel candidate gene in a genetic model of salt-sensitive hypertension (Sabra rat). Our group first reported that Axl plays a significant role in vascular remodeling in response to injury. Here we investigated the role of Axl in the pathogenesis of hypertension in a deoxycorticosterone acetate (DOCA)-salt model. Hypertension was induced in Axl wild-type (Axl(+/+)) mice and Axl-deficient (Axl(-/-)) mice by uninephrectomy and DOCA-salt for 6 weeks. Controls were uninephrectomized and received tap water and regular chow ad libitum. DOCA-salt treatment increased systolic blood pressure by 25 mm Hg in both genotypes after 1 week. Systolic blood pressure remained significantly elevated in Axl(+/+) DOCA, whereas systolic blood pressure levels in Axl(-/-) DOCA mice were the same as controls at 6 weeks. DOCA-salt increased relative kidney weight and glomerular hypertrophy by 40% compared with controls in both genotypes. Consistent with levels of systolic blood pressure, endothelium-dependent vasorelaxation was impaired in Axl(+/+) DOCA mice compared with Axl(+/+) controls, whereas in Axl(-/-) DOCA mice relaxation responses were similar to Axl(-/-) controls. In addition, endothelium-independent vasorelaxation was improved in Axl(-/-) DOCA mice compared with Axl(+/+) DOCA mice. Nitrotyrosine and phospho-Akt immunoreactivity was significantly reduced in arteries from Axl(-/-) DOCA mice compared with Axl(+/+) DOCA mice. The remodeling index of the mesenteric artery (media:lumen ratio) was significantly increased in Axl(+/+) DOCA mice compared with Axl(-/-) DOCA mice. Finally, increased vascular apoptosis in the Axl(-/-) DOCA mice suggests a likely mechanism for Axl-dependent effects on hypertension. These data strengthen the pathogenic role for Axl in salt-sensitive hypertension.


Assuntos
Vasos Sanguíneos/patologia , Desoxicorticosterona/farmacologia , Hipertensão/patologia , Proteínas Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Cloreto de Sódio/farmacologia , Animais , Aorta/fisiopatologia , Apoptose , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Imuno-Histoquímica , Rim/patologia , Artérias Mesentéricas/patologia , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas , Sístole/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Receptor Tirosina Quinase Axl
17.
Circ Res ; 98(11): 1446-52, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16627783

RESUMO

Intima-media thickening (IMT) in response to hemodynamic stress is a physiological process that requires coordinated signaling among endothelial, inflammatory, and vascular smooth muscle cells (VSMC). Axl, a receptor tyrosine kinase, whose ligand is Gas6, is highly induced in VSMC after carotid injury. Because Axl regulates cell migration, phagocytosis and apoptosis, we hypothesized that Axl would play a role in IMT. Vascular remodeling in mice deficient in Axl (Axl(-/-)) and wild-type littermates (Axl(+/+)) was induced by ligation of the left carotid artery (LCA) branches maintaining flow via the left occipital artery. Both genotypes had similar baseline hemodynamic parameters and carotid artery structure. Partial ligation altered blood flow equally in both genotypes: increased by 60% in the right carotid artery (RCA) and decreased by 80% in the LCA. There were no significant differences in RCA remodeling between genotypes. However, in the LCA Axl(-/-) developed significantly smaller intima+media compared with Axl(+/+) (31+/-4 versus 42+/-6x10(-6) microm3, respectively). Quantitative immunohistochemistry of Axl(-/-) LCA showed increased apoptosis compared with Axl(+/+) (5-fold). As expected, p-Akt was decreased in Axl(-/-), whereas there was no difference in Gas6 expression. Cell composition also changed significantly, with increases in CD45+ cells and decreases in VSMC, macrophages, and neutrophils in Axl(-/-) compared with Axl(+/+). These data demonstrate an important role for Axl in flow-dependent remodeling by regulating vascular apoptosis and vascular inflammation.


Assuntos
Circulação Sanguínea/fisiologia , Artéria Carótida Primitiva/fisiologia , Proteínas Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Túnica Íntima/fisiologia , Túnica Média/fisiologia , Animais , Apoptose , Artérias Carótidas/citologia , Artérias Carótidas/fisiologia , Artéria Carótida Primitiva/citologia , Proliferação de Células , Feminino , Hemodinâmica , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Túnica Íntima/metabolismo , Túnica Média/metabolismo , Receptor Tirosina Quinase Axl
18.
Circ Res ; 98(6): 777-84, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16514069

RESUMO

In response to biological and mechanical injury, or in vitro culturing, vascular smooth muscle cells (VSMCs) undergo phenotypic modulation from a differentiated "contractile" phenotype to a dedifferentiated "synthetic" one. This results in the capacity to proliferate, migrate, and produce extracellular matrix proteins, thus contributing to neointimal formation. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing cAMP or cGMP, are critical in the homeostasis of cyclic nucleotides that regulate VSMC growth. Here, we demonstrate that PDE1A, a Ca2+-calmodulin-stimulated PDE preferentially hydrolyzing cGMP, is predominantly cytoplasmic in medial "contractile" VSMCs but is nuclear in neointimal "synthetic" VSMCs. Using primary VSMCs, we show that cytoplasmic and nuclear PDE1A were associated with a contractile marker (SM-calponin) and a growth marker (Ki-67), respectively. This suggests that cytoplasmic PDE1A is associated with the "contractile" phenotype, whereas nuclear PDE1A is with the "synthetic" phenotype. To determine the role of nuclear PDE1A, we examined the effects loss-of-PDE1A function on subcultured VSMC growth and survival using PDE1A RNA interference and pharmacological inhibition. Reducing PDE1A function significantly attenuated VSMC growth by decreasing proliferation via G1 arrest and inducing apoptosis. Inhibiting PDE1A also led to intracellular cGMP elevation, p27Kip1 upregulation, cyclin D1 downregulation, and p53 activation. We further demonstrated that in subcultured VSMCs redifferentiated by growth on collagen gels, cytoplasmic PDE1A regulates myosin light chain phosphorylation with little effect on apoptosis, whereas inhibiting nuclear PDE1A has the opposite effects. These suggest that nuclear PDE1A is important in VSMC growth and survival and may contribute to the neointima formation in atherosclerosis and restenosis.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Diester Fosfórico Hidrolases/fisiologia , Animais , Apoptose , Núcleo Celular/química , Núcleo Celular/fisiologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , GMP Cíclico/análise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Inibidor de Quinase Dependente de Ciclina p27/análise , Citoplasma/química , Humanos , Masculino , Camundongos , Músculo Liso Vascular/enzimologia , Diester Fosfórico Hidrolases/análise , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/análise
19.
J Biol Chem ; 279(27): 28766-70, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15123721

RESUMO

Axl, a receptor tyrosine kinase, is involved in cell survival, proliferation, and migration. We have shown that Axl expression increases in the neointima of balloon-injured rat carotids. Because oxidative stress is known to play a major role in remodeling of injured vessels, we hypothesized that H(2)O(2) might activate Axl by promoting autophosphorylation. H(2)O(2) rapidly stimulated Axl tyrosine phosphorylation in rat vascular smooth muscle cells within 1 min that was maximal at 5 min (6-fold). The response to H(2)O(2) was concentration-dependent with EC(50) of approximately 500 microm. Axl phosphorylation was partly dependent on production of its endogenous ligand, growth arrest gene 6 (Gas6), because Axl-Fc, a fragment of Axl extracellular domain that neutralizes Gas6, inhibited H(2)O(2)-induced Axl phosphorylation by 50%. Axl phosphorylation by H(2)O(2) was also attenuated by warfarin, which inhibits Gas6 activity by preventing post-translational modification. In intact vessels Axl was phosphorylated by H(2)O(2), and Axl phosphorylation was inhibited by warfarin treatment in balloon-injured carotids. Akt, a downstream target of Axl, was phosphorylated by H(2)O(2)in Axl(+/+) mouse aorta but significantly inhibited in Axl(-/-) aorta. Intimal proliferation was decreased significantly in a cuff injury model in Axl(-/-) mice compared with Axl(+/+) mice. In summary, Axl is an important signaling mediator for oxidative stress in cultured vascular smooth muscle cells and intact vessels and may represent an important therapeutic target for vascular remodeling and response to injury.


Assuntos
Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Músculo Liso Vascular/citologia , Proteínas Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Western Blotting , Divisão Celular , Movimento Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Artéria Femoral/patologia , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Fosforilação , Testes de Precipitina , Proteínas Proto-Oncogênicas , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Tirosina/química , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Varfarina/farmacologia , Receptor Tirosina Quinase Axl
20.
J Vasc Res ; 41(2): 148-56, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15004434

RESUMO

Omapatrilat inhibits neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE). We compared the effects of omapatrilat (40 mg/kg/day, p.o.) to fosinopril (40 mg/kg/day, p.o.) on flow-induced vascular remodeling in New Zealand genetically hypertensive (GH) rats. Both drugs equally reduced blood pressure (BP) initially, but systolic BP and pulse pressure were reduced more by omapatrilat after 1 week. Carotid remodeling was induced by partial ligation of the left common carotid artery (LCA). There was little remodeling in untreated GH rats - measured as outer diameter to body weight (OD/BW vs. before ligation): 97 +/- 1% of initial LCA (low flow) and 107 +/- 3% of initial right common carotid artery (RCA, high flow). In contrast, OD/BW increased to 118 +/- 5% (p < 0.05) of initial RCA after omapatrilat versus 108 +/- 2% (p = 0.96) after fosinopril. The major change was increased RCA lumen area which was significantly larger in omapatrilat-treated animals (127% vs. control) than fosinopril-treated animals (103% vs. control). The increase in outward remodeling after omapatrilat treatment correlated weakly with vascular cGMP levels and decreased systolic BP. The results suggest that dual inhibition of NEP/ACE may have greater effects than ACE inhibition alone on vessel remodeling in hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Fosinopril/farmacologia , Hipertensão/tratamento farmacológico , Neprilisina/metabolismo , Peptidil Dipeptidase A/metabolismo , Piridinas/farmacologia , Tiazepinas/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Ritmo Circadiano , Quimioterapia Combinada , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Ratos , Ratos Mutantes , Fluxo Sanguíneo Regional/efeitos dos fármacos , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA