Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Eur J Nutr ; 60(6): 3423-3436, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33634319

RESUMO

PURPOSE: Adverse effects of iron fortification/supplements such as Micronutrient Powder (MNP) on gut microbiota have previously been found in infection-prone African settings. This study examined the adversaries of a low-iron MNP compared with the standard MNP on the composition of gut microbiota in Bangladeshi children exposed to a high concentration of iron from potable groundwater. METHODS: A randomized controlled trial was conducted in 2- to 5-year-old children, drinking groundwater with a high concentration of iron (≥ 2 mg/L). Children were randomized to receive one sachet per day of either standard MNP (12.5 mg iron) or low-iron MNP (5 mg iron), for 2 months. A sub-sample of 53 children was considered for paired assessment of the gut microbiome by 16S rRNA amplicon sequencing. RESULTS: At baseline, the gut microbiota consisted of Bifidobacteriaceae (15.6%), Prevotellaceae (12.2%), Lactobacillaceae (3.6%), Clostridiaceae (4.1%) and Enterobacteriaceae (2.8%). Overall, there was no significant treatment effect of the low-iron MNP compared to the standard MNP. However, an apparent treatment effect was observed in children with a relative adult-like microbiota, with a higher relative abundance of potentially pathogenic Enterobacteriaceae after receiving the standard MNP compared to the low-iron MNP. This effect, however, was statistically non-significant (p = 0.07). CONCLUSION: In Bangladeshi children drinking iron-rich groundwater, a low-iron MNP supplementation did not have a significant impact on their gut microbiota profile/composition compared to the standard MNP. The trial registration number is ISRCTN60058115; Date of registration 03/07/2019; retrospectively registered.


Assuntos
Anemia Ferropriva , Microbioma Gastrointestinal , Água Subterrânea , Adulto , Pré-Escolar , Suplementos Nutricionais , Humanos , Lactente , Ferro , Micronutrientes , Pós , RNA Ribossômico 16S/genética
2.
Nutrients ; 11(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671757

RESUMO

There is little data on human milk oligosaccharide (HMO) composition in Sub-Saharan Africa. Iron fortificants adversely affect the infant gut microbiota, while co-provision of prebiotic galacto-oligosaccharides (GOS) mitigates most of the adverse effects. Whether variations in maternal HMO profile can influence the infant response to iron and/or GOS fortificants is unknown. The aim of this study was to determine HMO profiles and the secretor/non-secretor phenotype of lactating Kenyan mothers and investigate their effects on the maternal and infant gut microbiota, and on the infant response to a fortification intervention with 5 mg iron (2.5 mg as sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) and 7.5 g GOS. We studied mother-infant pairs (n = 80) participating in a 4-month intervention trial in which the infants (aged 6.5-9.5 months) received daily a micronutrient powder without iron, with iron or with iron and GOS. We assessed: (1) maternal secretor status and HMO composition; (2) effects of secretor status on the maternal and infant gut microbiota in a cross-sectional analysis at baseline of the intervention trial; and (3) interactions between secretor status and intervention groups during the intervention trial on the infant gut microbiota, gut inflammation, iron status, growth and infectious morbidity. Secretor prevalence was 72% and HMOs differed between secretors and non-secretors and over time of lactation. Secretor status did not predict the baseline composition of the maternal and infant gut microbiota. There was a secretor-status-by-intervention-group interaction on Bifidobacterium (p = 0.021), Z-scores for length-for-age (p = 0.022) and weight-for-age (p = 0.018), and soluble transferrin receptor (p = 0.041). In the no iron group, longitudinal prevalence of diarrhea was higher among infants of non-secretors (23.8%) than of secretors (10.4%) (p = 0.001). In conclusion, HMO profile may modulate the infant gut microbiota response to fortificant iron; compared to infants of secretor mothers, infants of non-secretor mothers may be more vulnerable to the adverse effect of iron but also benefit more from the co-provision of GOS.


Assuntos
Suplementos Nutricionais , Ferro/administração & dosagem , Micronutrientes/administração & dosagem , Leite Humano/química , Oligossacarídeos/administração & dosagem , Oligossacarídeos/química , Adulto , Bactérias/classificação , Bactérias/genética , Método Duplo-Cego , Feminino , Microbioma Gastrointestinal , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Ferro/metabolismo , Quênia , Masculino , Micronutrientes/química , Mães , Oligossacarídeos/classificação , Oligossacarídeos/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Adulto Jovem
3.
Gut ; 68(4): 645-653, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30448776

RESUMO

OBJECTIVE: Many African infants receiving iron fortificants also receive antibiotics. Antibiotic efficacy against enteropathogens may be modified by high colonic iron concentrations. In this study, we evaluated the effect of antibiotics on the infant gut microbiome and diarrhoea when given with or without iron-containing micronutrient powders (MNPs). DESIGN: In a controlled intervention trial, four groups of community-dwelling infants (n=28; aged 8-10 months) received either: (A) antibiotics for 5 days and iron-MNPs for 40 days (Fe+Ab+); (B) antibiotics and no-iron-MNPs (Fe-Ab+); (C) no antibiotics and iron-MNPs (Fe+Ab-); or (D) no antibiotics and no-iron-MNPs (Fe-Ab-). We collected a faecal sample before the first antibiotic dose (D0) and after 5, 10, 20 and 40 days (D5-D40) to assess the gut microbiome composition by 16S profiling, enteropathogens by quantitative PCR, faecal calprotectin and pH and assessed morbidity over the 40-day study period. RESULTS: In Fe+Ab+, there was a decrease in Bifidobacterium abundances (p<0.05), but no decrease in Fe-Ab+. In Fe-Ab+, there was a decrease in abundances of pathogenic Escherichia coli (p<0.05), but no decrease in Fe+Ab+. In Fe-Ab+, there was a decrease in pH (p<0.05), but no decrease in Fe+Ab+. Longitudinal prevalence of diarrhoea was higher in Fe+Ab+ (19.6%) compared with Fe-Ab+ (12.4%) (p=0.04) and compared with Fe+Ab- (5.2%) (p=0.00). CONCLUSION: Our findings need confirmation in a larger study but suggest that, in African infants, iron fortification modifies the response to broad-spectrum antibiotics: iron may reduce their efficacy against potential enteropathogens, particularly pathogenic E. coli, and may increase risk for diarrhoea. TRIAL REGISTRATION NUMBER: NCT02118402; Pre-results.


Assuntos
Antibacterianos/efeitos adversos , Diarreia/microbiologia , Diarreia/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/farmacologia , Micronutrientes/farmacologia , Bifidobacterium/isolamento & purificação , Escherichia coli/isolamento & purificação , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lactente , Quênia , Complexo Antígeno L1 Leucocitário/análise , Masculino , Reação em Cadeia da Polimerase , Pós , Resultado do Tratamento
5.
Gut ; 66(11): 1956-1967, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28774885

RESUMO

OBJECTIVE: Iron-containing micronutrient powders (MNPs) reduce anaemia in African infants, but the current high iron dose (12.5 mg/day) may decrease gut Bifidobacteriaceae and Lactobacillaceae, and increase enteropathogens, diarrhoea and respiratory tract infections (RTIs). We evaluated the efficacy and safety of a new MNP formula with prebiotic galacto-oligosaccharides (GOS) combined with a low dose (5 mg/day) of highly bioavailable iron. DESIGN: In a 4-month, controlled, double-blind trial, we randomised Kenyan infants aged 6.5-9.5 months (n=155) to receive daily (1) a MNP without iron (control); (2) the identical MNP but with 5 mg iron (2.5 mg as sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) (Fe group); or (3) the identical MNP as the Fe group but with 7.5 g GOS (FeGOS group). RESULTS: Anaemia decreased by ≈50% in the Fe and FeGOS groups (p<0.001). Compared with the control or FeGOS group, in the Fe group there were (1) lower abundances of Bifidobacterium and Lactobacillus and higher abundances of Clostridiales (p<0.01); (2) higher abundances of virulence and toxin genes (VTGs) of pathogens (p<0.01); (3) higher plasma intestinal fatty acid-binding protein (a biomarker of enterocyte damage) (p<0.05); and (4) a higher incidence of treated RTIs (p<0.05). In contrast, there were no significant differences in these variables comparing the control and FeGOS groups, with the exception that the abundance of VTGs of all pathogens was significantly lower in the FeGOS group compared with the control and Fe groups (p<0.01). CONCLUSION: A MNP containing a low dose of highly bioavailable iron reduces anaemia, and the addition of GOS mitigates most of the adverse effects of iron on the gut microbiome and morbidity in African infants. TRIAL REGISTRATION NUMBER: NCT02118402.


Assuntos
Anemia Ferropriva/prevenção & controle , Compostos Férricos/efeitos adversos , Compostos Ferrosos/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Micronutrientes/efeitos adversos , Oligossacarídeos , Prebióticos , Método Duplo-Cego , Ácido Edético/efeitos adversos , Ácido Edético/uso terapêutico , Feminino , Compostos Férricos/uso terapêutico , Compostos Ferrosos/uso terapêutico , Humanos , Lactente , Quênia , Masculino , Micronutrientes/uso terapêutico , Oligossacarídeos/administração & dosagem , Prebióticos/administração & dosagem , Prebióticos/microbiologia
6.
Hemodial Int ; 21 Suppl 1: S28-S36, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28328083

RESUMO

Patients with chronic kidney disease (CKD) and loss of kidney function are at increased risk for morbidity and mortality. The risks of CKD are attributed to "uremia," an increased concentration of uremic retention solutes (toxins) in the plasma. Recently, a colo-renal axis became clearly apparent and uremia has been associated with an altered gut microbiome composition and metabolism. There is a high prevalence of anemia in patients with CKD, for which patients are often treated with oral or intravenous iron. Recent in vivo and in vitro studies have reported adverse effects of oral iron supplementation on the gut microbiota composition, gut metabolome, and intestinal health, which in turn may result in an increased production of uremic toxins. It may also affect circulating levels of other microbe-derived molecules, that can act as mediators of immune regulation. Changes in body iron levels have also been reported to exert subtle effects on host immune function by modulating immune cell proliferation and differentiation, and by directly regulating cytokine formation and antimicrobial immune effector mechanisms. Based on the foregoing it is conceivable that oral iron supplementation in iron deficient predialysis CKD patients adversely changes gut microbiota composition, the gut and systemic metabolome, and host immunity and infection. Future studies are needed to confirm these hypotheses and to assess whether, compared to IV iron supplementation, oral iron supplementation negatively impacts on morbidity of CKD, and whether these adverse effects depend on the iron bioavailability of the iron formulation to the microbiota.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Ferro/administração & dosagem , Metaboloma , Insuficiência Renal Crônica/metabolismo , Administração Oral , Humanos , Probióticos/farmacologia , Insuficiência Renal Crônica/microbiologia
7.
Eur J Immunol ; 45(9): 2553-67, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26046550

RESUMO

Orally administrated iron is suspected to increase susceptibility to enteric infections among children in infection endemic regions. Here we investigated the effect of dietary iron on the pathology and local immune responses in intestinal infection models. Mice were held on iron-deficient, normal iron, or high iron diets and after 2 weeks they were orally challenged with the pathogen Citrobacter rodentium. Microbiome analysis by pyrosequencing revealed profound iron- and infection-induced shifts in microbiota composition. Fecal levels of the innate defensive molecules and markers of inflammation lipocalin-2 and calprotectin were not influenced by dietary iron intervention alone, but were markedly lower in mice on the iron-deficient diet after infection. Next, mice on the iron-deficient diet tended to gain more weight and to have a lower grade of colon pathology. Furthermore, survival of the nematode Caenorhabditis elegans infected with Salmonella enterica serovar Typhimurium was prolonged after iron deprivation. Together, these data show that iron limitation restricts disease pathology upon bacterial infection. However, our data also showed decreased intestinal inflammatory responses of mice fed on high iron diets. Thus additionally, our study indicates that the effects of iron on processes at the intestinal host-pathogen interface may highly depend on host iron status, immune status, and gut microbiota composition.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Infecções por Enterobacteriaceae/patologia , Mucosa Intestinal/patologia , Intestinos/patologia , Ferro da Dieta/administração & dosagem , Salmonelose Animal/metabolismo , Proteínas de Fase Aguda/biossíntese , Proteínas de Fase Aguda/imunologia , Animais , Peso Corporal/imunologia , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Citrobacter rodentium/imunologia , Dieta/métodos , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Fezes/microbiologia , Feminino , Imunidade Inata , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Ferro da Dieta/efeitos adversos , Complexo Antígeno L1 Leucocitário/biossíntese , Complexo Antígeno L1 Leucocitário/imunologia , Lipocalina-2 , Lipocalinas/biossíntese , Lipocalinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/imunologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Salmonelose Animal/mortalidade , Salmonella typhimurium/imunologia , Análise de Sobrevida
8.
Gut ; 64(5): 731-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25143342

RESUMO

BACKGROUND: In-home iron fortification for infants in developing countries is recommended for control of anaemia, but low absorption typically results in >80% of the iron passing into the colon. Iron is essential for growth and virulence of many pathogenic enterobacteria. We determined the effect of high and low dose in-home iron fortification on the infant gut microbiome and intestinal inflammation. METHODS: We performed two double-blind randomised controlled trials in 6-month-old Kenyan infants (n=115) consuming home-fortified maize porridge daily for 4 months. In the first, infants received a micronutrient powder (MNP) containing 2.5 mg iron as NaFeEDTA or the MNP without iron. In the second, they received a different MNP containing 12.5 mg iron as ferrous fumarate or the MNP without the iron. The primary outcome was gut microbiome composition analysed by 16S pyrosequencing and targeted real-time PCR (qPCR). Secondary outcomes included faecal calprotectin (marker of intestinal inflammation) and incidence of diarrhoea. We analysed the trials separately and combined. RESULTS: At baseline, 63% of the total microbial 16S rRNA could be assigned to Bifidobacteriaceae but there were high prevalences of pathogens, including Salmonella Clostridium difficile, Clostridium perfringens, and pathogenic Escherichia coli. Using pyrosequencing, +FeMNPs increased enterobacteria, particularly Escherichia/Shigella (p=0.048), the enterobacteria/bifidobacteria ratio (p=0.020), and Clostridium (p=0.030). Most of these effects were confirmed using qPCR; for example, +FeMNPs increased pathogenic E. coli strains (p=0.029). +FeMNPs also increased faecal calprotectin (p=0.002). During the trial, 27.3% of infants in +12.5 mgFeMNP required treatment for diarrhoea versus 8.3% in -12.5 mgFeMNP (p=0.092). There were no study-related serious adverse events in either group. CONCLUSIONS: In this setting, provision of iron-containing MNPs to weaning infants adversely affects the gut microbiome, increasing pathogen abundance and causing intestinal inflammation. TRIAL REGISTRATION NUMBER: NCT01111864.


Assuntos
Enterocolite/induzido quimicamente , Alimentos Fortificados/efeitos adversos , Intestinos/microbiologia , Ferro da Dieta/efeitos adversos , Microbiota/efeitos dos fármacos , Anemia Ferropriva/prevenção & controle , Bactérias/isolamento & purificação , Diarreia Infantil/induzido quimicamente , Diarreia Infantil/microbiologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Enterocolite/microbiologia , Fezes/química , Humanos , Lactente , Ferro da Dieta/administração & dosagem , Ferro da Dieta/farmacologia , Complexo Antígeno L1 Leucocitário/metabolismo , Micronutrientes/administração & dosagem , Micronutrientes/efeitos adversos , Micronutrientes/farmacologia
9.
Front Microbiol ; 6: 1481, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26779139

RESUMO

Oral iron administration in African children can increase the risk for infections. However, it remains unclear to what extent supplementary iron affects the intestinal microbiome. We here explored the impact of iron preparations on microbial growth and metabolism in the well-controlled TNO's in vitro model of the large intestine (TIM-2). The model was inoculated with a human microbiota, without supplementary iron, or with 50 or 250 µmol/L ferrous sulfate, 50 or 250 µmol/L ferric citrate, or 50 µmol/L hemin. High resolution responses of the microbiota were examined by 16S rDNA pyrosequencing, microarray analysis, and metagenomic sequencing. The metabolome was assessed by fatty acid quantification, gas chromatography-mass spectrometry (GC-MS), and (1)H-NMR spectroscopy. Cultured intestinal epithelial Caco-2 cells were used to assess fecal water toxicity. Microbiome analysis showed, among others, that supplementary iron induced decreased levels of Bifidobacteriaceae and Lactobacillaceae, while it caused higher levels of Roseburia and Prevotella. Metagenomic analyses showed an enrichment of microbial motility-chemotaxis systems, while the metabolome markedly changed from a saccharolytic to a proteolytic profile in response to iron. Branched chain fatty acids and ammonia levels increased significantly, in particular with ferrous sulfate. Importantly, the metabolite-containing effluent from iron-rich conditions showed increased cytotoxicity to Caco-2 cells. Our explorations indicate that in the absence of host influences, iron induces a more hostile environment characterized by a reduction of microbes that are generally beneficial, and increased levels of bacterial metabolites that can impair the barrier function of a cultured intestinal epithelial monolayer.

10.
FEMS Microbiol Rev ; 38(6): 1202-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205464

RESUMO

Iron is abundantly present on earth, essential for most microorganisms and crucial for human health. Human iron deficiency that is nevertheless highly prevalent in developing regions of the world can be effectively treated by oral iron administration. Accumulating evidence indicates that excess of unabsorbed iron that enters the colonic lumen causes unwanted side effects at the intestinal host-microbiota interface. The chemical properties of iron, the luminal environment and host iron withdrawal mechanisms, especially during inflammation, can turn the intestine in a rather stressful milieu. Certain pathogenic enteric bacteria can, however, deal with this stress at the expense of other members of the gut microbiota, while their virulence also seems to be stimulated in an iron-rich intestinal environment. This review covers the multifaceted aspects of nutritional iron stress with respect to growth, composition, metabolism and pathogenicity of the gut microbiota in relation to human health. We aim to present an unpreceded view on the dynamic effects and impact of oral iron administration on intestinal host-microbiota interactions to provide leads for future research and other applications.


Assuntos
Intestinos/microbiologia , Ferro da Dieta/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/imunologia , Biodiversidade , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Intestinos/imunologia , Ferro/química , Ferro/metabolismo , Ferro da Dieta/metabolismo , Oxirredução , Estresse Fisiológico/efeitos dos fármacos
11.
Antimicrob Agents Chemother ; 58(3): 1664-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24379194

RESUMO

Oral iron therapy can increase the abundance of bacterial pathogens, e.g., Salmonella spp., in the large intestine of African children. Carvacrol is a natural compound with antimicrobial activity against various intestinal bacterial pathogens, among which is the highly prevalent Salmonella enterica serovar Typhimurium. This study aimed to explore a presumed interaction between carvacrol and bacterial iron handling and to assess the potential of carvacrol in preventing the increase of bacterial pathogenicity during high iron availability. S. Typhimurium was cultured with increasing concentrations of iron and carvacrol to study the effects of these combined interventions on growth, adhesion to intestinal epithelial cells, and iron uptake/influx in both bacterial and epithelial cells. In addition, the ability of carvacrol to remove iron from the high-affinity ligand transferrin and an Fe-dye complex was examined. Carvacrol retarded growth of S. Typhimurium at all iron conditions. Furthermore, iron-induced epithelial adhesion was effectively reduced by carvacrol at high iron concentrations. The reduction of growth and virulence by carvacrol was not paralleled by a change in iron uptake or influx into S. Typhimurium. In contrast, bioavailability of iron for epithelial cells was moderately decreased under these conditions. Further, carvacrol was shown to lack the properties of an iron binding molecule; however, it was able to weaken iron-ligand interactions by which it may possibly interfere with bacterial virulence. In conclusion, our in vitro data suggest that carvacrol has the potential to serve as a novel dietary supplement to prevent pathogenic overgrowth and colonization in the large intestine during oral iron therapy.


Assuntos
Antibacterianos/farmacologia , Mucosa Intestinal/microbiologia , Ferro/farmacologia , Monoterpenos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Células CACO-2/microbiologia , Cimenos , Relação Dose-Resposta a Droga , Compostos Férricos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Salmonella typhimurium/patogenicidade , Virulência/efeitos dos fármacos
12.
PLoS One ; 8(2): e57513, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460869

RESUMO

Hepcidin regulation by competing stimuli such as infection and iron deficiency has not been studied in infants and it's yet unknown whether hepcidin regulatory pathways are fully functional in infants. In this cross-sectional study including 339 Kenyan infants aged 6.0±1.1 months (mean±SD), we assessed serum hepcidin-25, biomarkers of iron status and inflammation, and fecal calprotectin. Prevalence of inflammation, anemia, and iron deficiency was 31%, 71%, 26%, respectively. Geometric mean (±SD) serum hepcidin was 6.0 (±3.4) ng/mL, and was significantly lower in males than females. Inflammation (C-reactive protein and interleukin-6) and iron status (serum ferritin, zinc protoporphyrin and soluble transferrin receptor) were significant predictors of serum hepcidin, explaining nearly 60% of its variance. There were small, but significant differences in serum hepcidin comparing iron deficient anemic (IDA) infants without inflammation to iron-deficient anemic infants with inflammation (1.2 (±4.9) vs. 3.4 (±4.9) ng/mL; P<0.001). Fecal calprotectin correlated with blood/mucus in the stool but not with hepcidin. Similarly, the gut-linked cytokines IL-12 and IL-17 did not correlate with hepcidin. We conclude that hepcidin regulatory pathways are already functional in infancy, but serum hepcidin alone may not clearly discriminate between iron-deficient anemic infants with and without infection. We propose gender-specific reference values for serum hepcidin in iron-replete infants without inflammation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/sangue , Trato Gastrointestinal/patologia , Inflamação/sangue , Ferro/metabolismo , População Rural , Caracteres Sexuais , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Doenças Transmissíveis/sangue , Doenças Transmissíveis/complicações , Citocinas/sangue , Fezes/química , Feminino , Hepcidinas , Humanos , Lactente , Inflamação/patologia , Quênia , Complexo Antígeno L1 Leucocitário/metabolismo , Masculino , Prognóstico , Valores de Referência , Análise de Regressão , Estatísticas não Paramétricas
13.
Nutr Cancer ; 65(2): 169-77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441604

RESUMO

Smoking and high red meat intake have been associated with colorectal cancer (CRC) risk. Increased iron exposure may be a common factor, favoring the colonization of certain bacterial pathogens that preferentially grow in an iron-rich luminal environment. We analyzed the data from a population-based case-control study of CRC and measured antibody levels against flagelin of Salmonella (FliC), one of the irontrophic bacteria, in 2 independent blood collections. The risk of CRC synergistically increased by combined exposures to heme iron intake and pack-yr (PY) of cigarette smoking (P value for the interaction = 0.039 on the continuous scale). There was a marginally significant interaction between heme iron intake and PY in increasing FliC antibody in the U.S. control subjects (P = 0.055), although no iron or smoking data were available for Dutch samples. Furthermore, FliC antibody levels were significantly higher in patients with colorectal polyps and cancer than in controls in both Dutch (3.93 vs. 2.23) (P = 0.014) and U.S. samples (6.65 vs. 4.37) (P < 0.001). Potential roles of iron from cigarette smoking and dietary heme in CRC through altering irontrophic luminal bacterial population may warrant further investigation.


Assuntos
Neoplasias Colorretais/etiologia , Mucosa Intestinal/microbiologia , Ferro da Dieta/efeitos adversos , Fumar/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/microbiologia , Feminino , Flagelina/metabolismo , Humanos , Ferro da Dieta/administração & dosagem , Masculino , Michigan/epidemiologia , Pessoa de Meia-Idade , Análise Multivariada , Países Baixos/epidemiologia , Razão de Chances , Fatores de Risco , Salmonella/metabolismo , Salmonella/patogenicidade
14.
Clin Chem ; 59(3): 527-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23232066

RESUMO

BACKGROUND: The iron-regulating hormone hepcidin is a promising biomarker in the diagnosis of iron disorders. Concentrations of hepcidin have been shown to increase during the day in individuals who are following a regular diet. It is currently unknown whether these increases are determined by an innate rhythm or by other factors. We aimed to assess the effect of dietary iron on hepcidin concentrations during the day. METHODS: Within a 7-day interval, 32 volunteers received an iron-deficient diet on 1 day and the same diet supplemented with 65 mg ferrous fumarate at 0815 and 1145 on another day. Blood was drawn to assess ferritin, hepcidin-25, and transferrin saturation (TS) throughout both days at 4 time points between 0800 (fasted) and 1600. A linear mixed model for repeated data was used to analyze the effect of iron intake on TS and hepcidin concentrations. RESULTS: Baseline values of hepcidin at 0800 correlated significantly with ferritin (r = 0.61). During the day of an iron-deficient diet the mean TS was similar both in men and in women, whereas hepcidin increased. During the day with iron supplementation the mean TS was significantly higher both in men and in women, and the mean hepcidin was moderately but significantly higher in women (1.0 nmol/L, 95% CI, 0.2-1.8) but not in men (0.0 nmol/L, 95% CI, -0.8 to 0.8). CONCLUSIONS: Our data demonstrate that ferritin sets the basal hepcidin concentrations and suggest that innate diurnal rhythm rather than dietary iron mediates the daily hepcidin variations. These findings will be useful for optimizing sampling protocols and will facilitate the interpretation of hepcidin as an iron biomarker.


Assuntos
Peptídeos Catiônicos Antimicrobianos/sangue , Ritmo Circadiano , Ferro da Dieta/administração & dosagem , Adolescente , Adulto , Suplementos Nutricionais , Feminino , Ferritinas/sangue , Hepcidinas , Humanos , Masculino , Pessoa de Meia-Idade , Transferrina/análise
15.
Mol Cell Proteomics ; 11(10): 851-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22713208

RESUMO

One of the few bacteria that have been consistently linked to colorectal cancer (CRC) is the opportunistic pathogen Streptococcus gallolyticus. Infections with this bacterium are generally regarded as an indicator for colonic malignancy, while the carriage rate of this bacterium in the healthy large intestine is relatively low. We speculated that the physiological changes accompanying the development of CRC might favor the colonization of this bacterium. To investigate whether colon tumor cells can support the survival of S. gallolyticus, this bacterium was grown in spent medium of malignant colonocytes to simulate the altered metabolic conditions in the CRC microenvironment. These in vitro simulations indicated that S. gallolyticus had a significant growth advantage in these spent media, which was not observed for other intestinal bacteria. Under these conditions, bacterial responses were profiled by proteome analysis and metabolic shifts were analyzed by (1)H-NMR-spectroscopy. In silico pathway analysis of the differentially expressed proteins and metabolite analysis indicated that this advantage resulted from the increased utilization of glucose, glucose derivates, and alanine. Together, these data suggest that tumor cell metabolites facilitate the survival of S. gallolyticus, favoring its local outgrowth and providing a possible explanation for the specific association of S. gallolyticus with colonic malignancy.


Assuntos
Adenocarcinoma/metabolismo , Proteínas de Bactérias/metabolismo , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Streptococcus/metabolismo , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Alanina/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Meios de Cultivo Condicionados/metabolismo , Eletroforese em Gel Bidimensional , Expressão Gênica , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Espectroscopia de Ressonância Magnética , Redes e Vias Metabólicas/fisiologia , Metabolômica , Proteoma , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Streptococcus/crescimento & desenvolvimento , Microambiente Tumoral
16.
PLoS One ; 7(1): e29968, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272265

RESUMO

Recent trials have questioned the safety of untargeted oral iron supplementation in developing regions. Excess of luminal iron could select for enteric pathogens at the expense of beneficial commensals in the human gut microflora, thereby increasing the incidence of infectious diseases. The objective of the current study was to determine the effect of high iron availability on virulence traits of prevalent enteric pathogens at the host-microbe interface. A panel of enteric bacteria was cultured under iron-limiting conditions and in the presence of increasing concentrations of ferric citrate to assess the effect on bacterial growth, epithelial adhesion, invasion, translocation and epithelial damage in vitro. Translocation and epithelial integrity experiments were performed using a transwell system in which Caco-2 cells were allowed to differentiate to a tight epithelial monolayer mimicking the intestinal epithelial barrier. Growth of Salmonella typhimurium and other enteric pathogens was increased in response to iron. Adhesion of S. typhimurium to epithelial cells markedly increased when these bacteria were pre-incubated with increasing iron concentration (P = 0.0001), whereas this was not the case for the non-pathogenic Lactobacillus plantarum (P = 0.42). Cellular invasion and epithelial translocation of S. typhimurium followed the trend of increased adhesion. Epithelial damage was increased upon incubation with S. typhimurium or Citrobacter freundii that were pre-incubated under iron-rich conditions. In conclusion, our data fit with the consensus that oral iron supplementation is not without risk as iron could, in addition to inducing pathogenic overgrowth, also increase the virulence of prevalent enteric pathogens.


Assuntos
Mucosa Intestinal/metabolismo , Ferro/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Aderência Bacteriana/efeitos dos fármacos , Translocação Bacteriana/efeitos dos fármacos , Disponibilidade Biológica , Células CACO-2 , Citrobacter freundii/crescimento & desenvolvimento , Citrobacter freundii/fisiologia , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/fisiologia , Epitélio/metabolismo , Epitélio/microbiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Compostos Férricos/farmacologia , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Ferro da Dieta/administração & dosagem , Ferro da Dieta/metabolismo , Ferro da Dieta/farmacocinética , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/fisiologia , Salmonella typhimurium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA