RESUMO
Individual tumor characterization and treatment response monitoring based on current medical imaging methods remain challenging. This work investigates hyperpolarized (13) C compounds in an orthotopic rat hepatocellular carcinoma (HCC) model system before and after transcatheter arterial embolization (TAE). HCC ranks amongst the top six most common cancer types in humans and accounts for one-third of cancer-related deaths worldwide. Early therapy response monitoring could aid in the development of personalized therapy approaches and novel therapeutic concepts. Measurements with selectively (13) C-labeled and hyperpolarized urea, pyruvate and fumarate were performed in tumor-bearing rats before and after TAE. Two-dimensional, slice-selective MRSI was used to obtain spatially resolved maps of tumor perfusion, cell energy metabolic conversion rates and necrosis, which were additionally correlated with immunohistochemistry. All three injected compounds, taken together with their respective metabolites, exhibited similar signal distributions. TAE induced a decrease in blood flow into the tumor and thus a decrease in tumor to muscle and tumor to liver ratios of urea, pyruvate and its metabolites, alanine and lactate, whereas conversion rates remained stable or increased on TAE in tumor, muscle and liver tissue. Conversion from fumarate to malate successfully indicated individual levels of necrosis, and global malate signals after TAE suggested the washout of fumarase or malate itself on necrosis. This study presents a combination of three (13) C compounds as novel candidate biomarkers for a comprehensive characterization of genetically and molecularly diverse HCC using hyperpolarized MRSI, enabling the simultaneous detection of differences in tumor perfusion, metabolism and necrosis. If, as in this study, bolus dynamics are not required and qualitative perfusion information is sufficient, the desired information could be extracted from hyperpolarized fumarate and pyruvate alone, acquired at higher fields with better spectral separation. Copyright © 2016 John Wiley & Sons, Ltd.
Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Embolização Terapêutica/métodos , Imagem Molecular/métodos , Compostos Orgânicos/metabolismo , Animais , Carcinoma Hepatocelular/diagnóstico , Linhagem Celular Tumoral , Feminino , Imageamento por Ressonância Magnética/métodos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do TratamentoRESUMO
Anticalins are a novel class of targeted protein therapeutics. The PEGylated Anticalin Angiocal (PRS-050-PEG40) is directed against VEGF-A. The purpose of our study was to compare the performance of diffusion weighted imaging (DWI), dynamic contrast enhanced magnetic resonance imaging (DCE)-MRI and positron emission tomography with the tracer [18F]fluorodeoxyglucose (FDG-PET) for monitoring early response to antiangiogenic therapy with PRS-050-PEG40. 31 mice were implanted subcutaneously with A673 rhabdomyosarcoma xenografts and underwent DWI, DCE-MRI and FDG-PET before and 2 days after i.p. injection of PRS-050-PEG40 (n = 13), Avastin (n = 6) or PBS (n = 12). Tumor size was measured manually with a caliper. Imaging results were correlated with histopathology. In the results, the tumor size was not significantly different in the treatment groups when compared to the control group on day 2 after therapy onset (P = 0.09). In contrast the imaging modalities DWI, DCE-MRI and FDG-PET showed significant differences between the therapeutic compared to the control group as early as 2 days after therapy onset (P<0.001). There was a strong correlation of the early changes in DWI, DCE-MRI and FDG-PET at day 2 after therapy onset and the change in tumor size at the end of therapy (r = -0.58, 0.71 and 0.67 respectively). The imaging results were confirmed by histopathology, showing early necrosis and necroptosis in the tumors. Thus multimodality multiparametric imaging was able to predict therapeutic success of PRS-050-PEG40 and Avastin as early as 2 days after onset of therapy and thus promising for monitoring early response of antiangiogenic therapy.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Lipocalinas/uso terapêutico , Imagem Multimodal , Neovascularização Patológica/tratamento farmacológico , Animais , Bevacizumab , Feminino , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Camundongos , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos RadiofarmacêuticosRESUMO
We have synthesized a targeted imaging agent for rheumatoid arthritis based on polysulfated gold nanorods. The CTAB layer on gold nanorods was first replaced with PEG-thiol and then with dendritic polyglycerolsulfate at elevated temperature, which resulted in significantly reduced cytotoxicity compared to polyanionic gold nanorods functionalized by non-covalent approaches. In addition to classical characterization methods, we have established a facile UV-VIS based BaCl2 agglomeration assay to confirm a quantitative removal of unbound ligand. With the help of a competitive surface plasmon resonance-based L-selectin binding assay and a leukocyte adhesion-based flow cell assay, we have demonstrated the high inflammation targeting potential of the synthesized gold nanorods in vitro. In combination with the surface plasmon resonance band of AuNRs at 780 nm, these findings permitted the imaging of inflammation in an in vivo mouse model for rheumatoid arthritis with high contrast using multispectral optoacoustic tomography. The study offers a robust method for otherwise difficult to obtain covalently functionalized polyanionic gold nanorods, which are suitable for biological applications as well as a low-cost, actively targeted, and high contrast imaging agent for the diagnosis of rheumatoid arthritis. This paves the way for further research in other inflammation associated pathologies, in particular, when photothermal therapy can be applied.
Assuntos
Artrite Experimental/diagnóstico , Glicerol/química , Nanopartículas Metálicas/química , Técnicas Fotoacústicas , Polímeros/química , Animais , Linhagem Celular Tumoral , Glicerol/farmacocinética , Ouro/química , Ouro/farmacocinética , Humanos , Camundongos , Polímeros/farmacocinéticaRESUMO
In this work, two pharmacokinetic modeling techniques, population arterial input function model, and reference region model, were applied to dynamic contract-enhanced MRI data, to test the influence of a change in heart rate on modeling parameters. A rat population arterial input function was generated by dynamic contrast-enhanced computed tomography measurements using the MR contrast agent gadolinium diethylenetriamine penta-acetic acid. Then, dynamic contract-enhanced MRI was used for treatment monitoring in two groups of hepatocellular carcinoma bearing rats. Whereas group 1 had the same heart rate as animals analyzed for the population arterial input function (263 ± 20 bpm), group 2 had a higher heart rate (369 ± 11 bpm) due to a different anesthesia protocol. The pharmacokinetic modeling parameters volume transfer constant K(trans) and relative extravascular extracellular space v(e) were calculated with both models and statistically compared. For group 1, good correlation and agreement was found between the models showing no difference in K(trans) and v(e) (ΔK(trans): 4 ± 19% and Δv(e): 4 ± 12%, P = 0.2). In contrast, for group 2, a bias in parameter values for the population arterial input function model was detected (ΔK(trans): -45 ± 7% and Δv(e): -31 ± 7%, P ≤ 0.001). The presented work underlines the value of the reference region model in longitudinal treatment monitoring and provides a straightforward approach for the generation of a rat population arterial input function.