Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254715

RESUMO

Lung organoids display a tissue-specific functional phenomenon and mimic the features of the original organ. They can reflect the properties of the cells, such as morphology, polarity, proliferation rate, gene expression, and genomic profile. Alveolar type 2 (AT2) cells have a stem cell potential in the adult lung. They produce and secrete pulmonary surfactant and proliferate to restore the epithelium after damage. Therefore, AT2 cells are used to generate alveolar organoids and can recapitulate distal lung structures. Also, AT2 cells in human-induced pluripotent stem cell (iPSC)-derived alveolospheres express surfactant proteins and other factors, indicating their application as suitable models for studying cell-cell interactions. Recently, they have been utilized to define mechanisms of disease development, such as COVID-19, lung cancer, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this review, we show lung organoid applications in various pulmonary diseases, drug screening, and personalized medicine. In addition, stem cell-based therapeutics and approaches relevant to lung repair were highlighted. We also described the signaling pathways and epigenetic regulation of lung regeneration. It is critical to identify novel regulators of alveolar organoid generations to promote lung repair in pulmonary diseases.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Epigênese Genética , Organoides
2.
Am J Respir Cell Mol Biol ; 70(4): 259-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117249

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease caused by an aberrant repair of injured alveolar epithelial cells. The maintenance of the alveolar epithelium and its regeneration after the damage is fueled by alveolar type II (ATII) cells. Injured cells release exosomes containing microRNAs (miRNAs), which can alter the recipient cells' function. Lung tissue, ATII cells, fibroblasts, plasma, and exosomes were obtained from naive patients with IPF, patients with IPF taking pirfenidone or nintedanib, and control organ donors. miRNA expression was analyzed to study their impact on exosome-mediated effects in IPF. High miR-143-5p and miR-342-5p levels were detected in ATII cells, lung tissue, plasma, and exosomes in naive patients with IPF. Decreased FASN (fatty acid synthase) and ACSL-4 (acyl-CoA-synthetase long-chain family member 4) expression was found in ATII cells. miR-143-5p and miR-342-5p overexpression or ATII cell treatment with IPF-derived exosomes containing these miRNAs lowered FASN and ACSL-4 levels. Also, this contributed to ATII cell injury and senescence. However, exosomes isolated from patients with IPF taking nintedanib or pirfenidone increased FASN expression in ATII cells compared with naive patients with IPF. Furthermore, fibroblast treatment with exosomes obtained from naive patients with IPF increased SMAD3, CTGF, COL3A1, and TGFß1 expression. Our results suggest that IPF-derived exosomes containing miR-143-5p and miR-342-5p inhibited the de novo fatty acid synthesis pathway in ATII cells. They also induced the profibrotic response in fibroblasts. Pirfenidone and nintedanib improved ATII cell function and inhibited fibrogenesis. This study highlights the importance of exosomes in IPF pathophysiology.


Assuntos
Exossomos , Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Células Epiteliais Alveolares/metabolismo , Exossomos/metabolismo , Ácido Graxo Sintases/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Cells ; 11(13)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35805139

RESUMO

Alveolar type II (ATII) cells are progenitors in alveoli and can repair the alveolar epithelium after injury. They are intertwined with the microenvironment for alveolar epithelial cell homeostasis and re-epithelialization. A variety of ATII cell niches, transcription factors, mediators, and signaling pathways constitute a specific environment to regulate ATII cell function. Particularly, WNT/ß-catenin, YAP/TAZ, NOTCH, TGF-ß, and P53 signaling pathways are dynamically involved in ATII cell proliferation and differentiation, although there are still plenty of unknowns regarding the mechanism. However, an imbalance of alveolar cell death and proliferation was observed in patients with pulmonary emphysema, contributing to alveolar wall destruction and impaired gas exchange. Cigarette smoking causes oxidative stress and is the primary cause of this disease development. Aberrant inflammatory and oxidative stress responses result in loss of cell homeostasis and ATII cell dysfunction in emphysema. Here, we discuss the current understanding of alveolar re-epithelialization and altered reparative responses in the pathophysiology of this disease. Current therapeutics and emerging treatments, including cell therapies in clinical trials, are addressed as well.


Assuntos
Enfisema Pulmonar , Células Epiteliais Alveolares/metabolismo , Humanos , Pulmão/metabolismo , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Reepitelização
4.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L507-L517, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873929

RESUMO

Mitochondria are involved in a variety of critical cellular functions, and their impairment drives cell injury. The mitochondrial ribosome (mitoribosome) is responsible for the protein synthesis of mitochondrial DNA-encoded genes. These proteins are involved in oxidative phosphorylation, respiration, and ATP production required in the cell. Mitoribosome components originate from both mitochondrial and nuclear genomes. Their dysfunction can be caused by impaired mitochondrial protein synthesis or mitoribosome misassembly, leading to a decline in mitochondrial translation. This decrease can trigger mitochondrial ribosomal stress and contribute to pulmonary cell injury, death, and diseases. This review focuses on the contribution of the impaired mitoribosome structural components and function to respiratory disease pathophysiology. We present recent findings in the fields of lung cancer, chronic obstructive pulmonary disease, interstitial lung disease, and asthma. We also include reports on the mitoribosome dysfunction in pulmonary hypertension, high-altitude pulmonary edema, and bacterial and viral infections. Studies of the mitoribosome alterations in respiratory diseases can lead to novel therapeutic targets.


Assuntos
Pneumopatias , Ribossomos Mitocondriais , Humanos , Pneumopatias/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas
5.
Biomed Pharmacother ; 143: 112216, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649347

RESUMO

Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease becoming one of the leading causes of mortality and morbidity globally. The significant risk factors for COPD are exposure to harmful particles such as cigarette smoke, biomass smoke, and air pollution. Pulmonary emphysema belongs to COPD and is characterized by a unique alveolar destruction pattern resulting in marked airspace enlargement. Alveolar type II (ATII) cells have stem cell potential; they proliferate and differentiate to alveolar type I cells to restore the epithelium after damage. Oxidative stress causes premature cell senescence that can contribute to emphysema development. MiRNAs regulate gene expression, are essential for maintaining ATII cell homeostasis, and their dysregulation contributes to this disease development. They also serve as biomarkers of lung diseases and potential therapeutics. In this review, we summarize recent findings on miRNAs' role in alveolar epithelial cells in emphysema.


Assuntos
Células Epiteliais Alveolares/metabolismo , MicroRNAs/metabolismo , Enfisema Pulmonar/metabolismo , Fumar/efeitos adversos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , Estresse Oxidativo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/genética , Transdução de Sinais
6.
Clin Sci (Lond) ; 135(17): 2067-2083, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405230

RESUMO

Dipeptidyl peptidase 4 (DPP4) expression is increased in the lungs of chronic obstructive pulmonary disease (COPD). DPP4 is known to be associated with inflammation in various organs, including LPS-induced acute lung inflammation. Since non-typeable Haemophilus influenzae (NTHi) causes acute exacerbations in COPD patients, we examined the contribution of DPP4 in NTHi-induced lung inflammation in COPD. Pulmonary macrophages isolated from COPD patients showed higher expression of DPP4 than the macrophages isolated from normal subjects. In response to NTHi infection, COPD, but not normal macrophages show a further increase in the expression of DPP4. COPD macrophages also showed higher expression of IL-1ß, and CCL3 responses to NTHi than normal, and treatment with DPP4 inhibitor, diprotin A attenuated this response. To examine the contribution of DPP4 in NTHi-induced lung inflammation, COPD mice were infected with NTHi, treated with diprotin A or PBS intraperitoneally, and examined for DPP4 expression, lung inflammation, and cytokine expression. Mice with COPD phenotype showed increased expression of DPP4, which increased further following NTHi infection. DPP4 expression was primarily observed in the infiltrated inflammatory cells. NTHi-infected COPD mice also showed sustained neutrophilic lung inflammation and expression of CCL3, and this was inhibited by DPP4 inhibitor. These observations indicate that enhanced expression of DPP4 in pulmonary macrophages may contribute to sustained lung inflammation in COPD following NTHi infection. Therefore, inhibition of DPP4 may reduce the severity of NTHi-induced lung inflammation in COPD.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Infecções por Haemophilus/enzimologia , Haemophilus influenzae/patogenicidade , Macrófagos Alveolares/enzimologia , Pneumonia Bacteriana/enzimologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Idoso , Animais , Estudos de Casos e Controles , Quimiocina CCL20/metabolismo , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Feminino , Infecções por Haemophilus/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/metabolismo , Macrófagos Alveolares/microbiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Pneumonia Bacteriana/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia
7.
Biomedicines ; 9(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356843

RESUMO

Alveolar type II (ATII) cells proliferate and restore the injured epithelium. It has been described that SARS-CoV-2 infection causes diffuse alveolar damage in the lungs. However, host factors facilitating virus infection in ATII cells are not well known. We determined the SARS-CoV-2-related genes and protein expression using RT-PCR and Western blotting, respectively, in ATII cells isolated from young and elderly non-smokers, smokers, and ex-smokers. Cells were also obtained from lung transplants of emphysema patients. ACE2 has been identified as the receptor for SARS-CoV-2, and we found significantly increased levels in young and elderly smokers and emphysema patients. The viral entry depends on TMPRSS2 protease activity, and a higher expression was detected in elderly smokers and ex-smokers and emphysema patients. Both ACE2 and TMPRSS2 mRNA levels were higher in this disease in comparison with non-smokers. CD209L serves as a receptor for SARS-CoV-2, and we found increased levels in ATII cells obtained from smokers and in emphysema patients. Also, our data suggest CD209L regulation by miR142. Endoplasmic reticulum stress was detected in ATII cells in this disease. Our results suggest that upregulation of SARS-CoV-2 entry factors in ATII cells in aging, smokers, and emphysema patients may facilitate infection.

8.
Arterioscler Thromb Vasc Biol ; 41(2): 839-853, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33380174

RESUMO

OBJECTIVE: Electronic cigarette (e-cig) use has recently been implicated in promoting atherosclerosis. In this study, we aimed to investigate the mechanism of e-cig exposure accelerated atherosclerotic lesion development. Approach and Results: Eight-week-old ApoE-/- mice fed normal laboratory diet were exposed to e-cig vapor (ECV) for 2 hours/day, 5 days/week for 16 weeks. We found that ECV exposure significantly induced atherosclerotic lesions as examined by Oil Red O staining and greatly upregulated TLR9 (toll-like receptor 9) expression in classical monocytes and in the atherosclerotic plaques, which the latter was corroborated by enhanced TLR9 expression in human femoral artery atherosclerotic plaques from e-cig smokers. Intriguingly, we found a significant increase of oxidative mitochondria DNA lesion in the plasma of ECV-exposed mice. Administration of TLR9 antagonist before ECV exposure not only alleviated atherosclerosis and the upregulation of TLR9 in plaques but also attenuated the increase of plasma levels of inflammatory cytokines, reduced the plaque accumulation of lipid and macrophages, and decreased the frequency of blood CCR2+ (C-C chemokine receptor type 2) classical monocytes. Surprisingly, we found that cytoplasmic mitochondrial DNA isolated from ECV extract-treated macrophages can enhance TLR9 activation in reporter cells and the induction of inflammatory cytokine could be suppressed by TLR9 inhibitor in macrophages. CONCLUSIONS: E-cig increases level of damaged mitochondrial DNA in circulating blood and induces the expression of TLR9, which elevate the expression of proinflammatory cytokines in monocyte/macrophage and consequently lead to atherosclerosis. Our results raise the possibility that intervention of TLR9 activation is a potential pharmacological target of ECV-related inflammation and cardiovascular diseases.


Assuntos
Aorta/metabolismo , Aterosclerose/etiologia , Dano ao DNA , DNA Mitocondrial/metabolismo , Vapor do Cigarro Eletrônico/efeitos adversos , Inflamação/etiologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , DNA Mitocondrial/genética , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Células RAW 264.7 , Transdução de Sinais , Fumantes , Vaping
9.
Front Med (Lausanne) ; 8: 762878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047522

RESUMO

Pulmonary emphysema is characterized by the destruction of alveolar septa and irreversible airflow limitation. Cigarette smoking is the primary cause of this disease development. It induces oxidative stress and disturbs lung physiology and tissue homeostasis. Alveolar type II (ATII) cells have stem cell potential and can repair the denuded epithelium after injury; however, their dysfunction is evident in emphysema. There is no effective treatment available for this disease. Challenges in this field involve the large complexity of lung pathophysiological processes and gaps in our knowledge on the mechanisms of emphysema progression. It implicates dysregulation of various signaling pathways, including aberrant inflammatory and oxidative responses, defective antioxidant defense system, surfactant dysfunction, altered proteostasis, disrupted circadian rhythms, mitochondrial damage, increased cell senescence, apoptosis, and abnormal proliferation and differentiation. Also, genetic predispositions are involved in this disease development. Here, we comprehensively review studies regarding dysregulated cell signaling, especially in ATII cells, and their contribution to alveolar wall destruction in emphysema. Relevant preclinical and clinical interventions are also described.

10.
J Biol Chem ; 295(52): 18051-18064, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33082140

RESUMO

Evolving evidence suggests that nicotine may contribute to impaired asthma control by stimulating expression of nerve growth factor (NGF), a neurotrophin associated with airway remodeling and airway hyperresponsiveness. We explored the hypothesis that nicotine increases NGF by reducing lung fibroblast (LF) microRNA-98 (miR-98) and PPARγ levels, thus promoting airway remodeling. Levels of NGF, miR-98, PPARγ, fibronectin 1 (FN1), endothelin-1 (EDN1, herein referred to as ET-1), and collagen (COL1A1 and COL3A1) were measured in human LFs isolated from smoking donors, in mouse primary LFs exposed to nicotine (50 µg/ml), and in whole lung homogenates from mice chronically exposed to nicotine (100 µg/ml) in the drinking water. In selected studies, these pathways were manipulated in LFs with miR-98 inhibitor (anti-miR-98), miR-98 overexpression (miR-98 mimic), or the PPARγ agonist rosiglitazone. Compared with unexposed controls, nicotine increased NGF, FN1, ET-1, COL1A1, and COL3A1 expression in human and mouse LFs and mouse lung homogenates. In contrast, nicotine reduced miR-98 levels in LFs in vitro and in lung homogenates in vivo Treatment with anti-miR-98 alone was sufficient to recapitulate increases in NGF, FN1, and ET-1, whereas treatment with a miR-98 mimic significantly suppressed luciferase expression in cells transfected with a luciferase reporter linked to the putative seed sequence in the NGF 3'UTR and also abrogated nicotine-induced increases in NGF, FN1, and ET-1 in LFs. Similarly, rosiglitazone increased miR-98 and reversed nicotine-induced increases in NGF, FN1, and ET-1. Taken together, these findings demonstrate that nicotine-induced increases in NGF and other markers of airway remodeling are negatively regulated by miR-98.


Assuntos
Remodelação das Vias Aéreas , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Fator de Crescimento Neural/metabolismo , Nicotina/toxicidade , Hipersensibilidade Respiratória/patologia , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/genética , Agonistas Nicotínicos/toxicidade , PPAR gama , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo
11.
Mucosal Immunol ; 13(4): 637-651, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034274

RESUMO

Goblet cell hyperplasia and metaplasia and excessive mucus are prominent pathologies of chronic airway diseases such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and chronic bronchitis. Chronic infection by respiratory pathogens, including Pseudomonas aeruginosa, exacerbates cyclical proinflammatory responses and mucus hypersecretion. P. aeruginosa and its virulence factor pyocyanin contribute to these pathologies by inhibiting FOXA2, a key transcriptional regulator of mucus homeostasis, through activation of antagonistic signaling pathways EGFR-AKT/ERK1/2 and IL-4/IL-13-STAT6-SPDEF. However, FOXA2-targeted therapy has not been previously explored. Here, we examined the feasibility of repurposing the incretin mimetic Exendin-4 to restore FOXA2-mediated airway mucus homeostasis. We have found that Exendin-4 restored FOXA2 expression, attenuated mucin production in COPD and CF-diseased airway cells, and reduced mucin and P. aeruginosa burden in mouse lungs. Mechanistically, Exendin-4 activated the GLP1R-PKA-PPAR-γ-dependent phosphatases PTEN and PTP1B, which inhibited key kinases within both EGFR and STAT6 signaling cascades. Our results may lead to the repurposing of Exendin-4 and other incretin mimetics to restore FOXA2 function and ultimately regulate excessive mucus in diseased airways.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Exenatida/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Homeostase , PPAR gama/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suscetibilidade a Doenças , Receptores ErbB/metabolismo , Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Humanos , Modelos Biológicos , Mucinas/genética , Mucinas/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fator de Transcrição STAT6/metabolismo
12.
Cell Death Dis ; 10(9): 638, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31474749

RESUMO

DJ-1 is a multifunctional protein with cytoprotective functions. It is localized in the cytoplasm, nucleus, and mitochondria. The conserved cysteine residue at position 106 (Cys106) within DJ-1 serves as a sensor of redox state and can be oxidized to both the sulfinate (-SO2-) and sulfonate (-SO3-) forms. DJ-1 with Cys106-SO2- has cytoprotective activity but high levels of reactive oxygen species can induce its overoxidation to Cys106-SO3-. We found increased oxidative stress in alveolar type II (ATII) cells isolated from emphysema patients as determined by 4-HNE expression. DJ-1 with Cys106-SO3- was detected in these cells by mass spectrometry analysis. Moreover, ubiquitination of Cys106-SO3- DJ-1 was identified, which suggests that this oxidized isoform is targeted for proteasomal destruction. Furthermore, we performed controlled oxidation using H2O2 in A549 cells with DJ-1 knockout generated using CRISPR-Cas9 strategy. Lack of DJ-1 sensitized cells to apoptosis induced by H2O2 as detected using Annexin V and propidium iodide by flow cytometry analysis. This treatment also decreased both mitochondrial DNA amount and mitochondrial ND1 (NADH dehydrogenase 1, subunit 1) gene expression, as well as increased mitochondrial DNA damage. Consistent with the decreased cytoprotective function of overoxidized DJ-1, recombinant Cys106-SO3- DJ-1 exhibited a loss of its thermal unfolding transition, mild diminution of secondary structure in CD spectroscopy, and an increase in picosecond-nanosecond timescale dynamics as determined using NMR. Altogether, our data indicate that very high oxidative stress in ATII cells in emphysema patients induces DJ-1 overoxidation to the Cys106-SO3- form, leading to increased protein flexibility and loss of its cytoprotective function, which may contribute to this disease pathogenesis.


Assuntos
Células Epiteliais Alveolares/metabolismo , Cisteína/metabolismo , Proteína Desglicase DJ-1/metabolismo , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo/fisiologia , Transfecção
13.
EBioMedicine ; 46: 305-316, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31383554

RESUMO

BACKGROUND: Cigarette smoke is the main risk factor of pulmonary emphysema development, which is characterized by alveolar wall destruction. Mitochondria are important for alveolar type II (ATII) cell metabolism due to ATP generation. METHODS: We isolated ATII cells from control non-smoker and smoker organ donors, and after lung transplant of patients with emphysema to determine mitochondrial function, dynamics and mitochondrial (mt) DNA damage. FINDINGS: We found high mitochondrial superoxide generation and mtDNA damage in ATII cells in emphysema. This correlated with decreased mtDNA amount. We also detected high TOP1-cc and low TDP1 levels in mitochondria in ATII cells in emphysema. This contributed to the decreased resolution of TOP1-cc leading to accumulation of mtDNA damage and mitochondrial dysfunction. Moreover, we used lung tissue obtained from areas with mild and severe emphysema from the same patients. We found a correlation between the impaired fusion and fission as indicated by low MFN1, OPA1, FIS1, and p-DRP1 levels and this disease severity. We detected lower TDP1 expression in severe compared to mild emphysema. INTERPRETATION: We found high DNA damage and impairment of DNA damage repair in mitochondria in ATII cells isolated from emphysema patients, which contribute to abnormal mitochondrial dynamics. Our findings provide molecular mechanisms of mitochondrial dysfunction in this disease. FUND: This work was supported by National Institutes of Health (NIH) grant R01 HL118171 (B.K.) and the Catalyst Award from the American Lung Association (K.B.).


Assuntos
Células Epiteliais Alveolares/metabolismo , Mitocôndrias/metabolismo , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Trifosfato de Adenosina/biossíntese , Dano ao DNA , DNA Mitocondrial , Progressão da Doença , Metabolismo Energético , Humanos , Mitocôndrias/genética , Estresse Oxidativo , Diester Fosfórico Hidrolases/metabolismo , Transporte Proteico , Enfisema Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Superóxidos/metabolismo
14.
Front Immunol ; 10: 1417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293581

RESUMO

Rationale: The association between non-tuberculous mycobacterial lung disease and alpha-1-antitrypsin (AAT) deficiency is likely due, in part, to underlying emphysema or bronchiectasis. But there is increasing evidence that AAT itself enhances host immunity against microbial pathogens and thus deficiency could compromise host protection. Objectives: The goal of this project is to determine if AAT could augment macrophage activity against non-tuberculous mycobacteria. Methods: We compared the ability of monocyte-derived macrophages cultured in autologous plasma that were obtained immediately before and soon after AAT infusion-given to individuals with AAT deficiency-to control an ex vivo Mycobacterium intracellulare infection. Measurements and Main Results: We found that compared to pre-AAT infused monocyte-derived macrophages plus plasma, macrophages, and contemporaneous plasma obtained after a session of AAT infusion were significantly better able to control M. intracellulare infection; the reduced bacterial burden was linked with greater phagosome-lysosome fusion and increased autophagosome formation/maturation, the latter due to AAT inhibition of both M. intracellulare-induced nuclear factor-kappa B activation and A20 expression. While there was a modest increase in apoptosis in the M. intracellulare-infected post-AAT infused macrophages and plasma, inhibiting caspase-3 in THP-1 cells, monocyte-derived macrophages, and alveolar macrophages unexpectedly reduced the M. intracellulare burden, indicating that apoptosis impairs macrophage control of M. intracellulare and that the host protective effects of AAT occurred despite inducing apoptosis. Conclusion: AAT augments macrophage control of M. intracellulare infection through enhancing phagosome-lysosome fusion and autophagy.


Assuntos
Macrófagos Alveolares/imunologia , Complexo Mycobacterium avium/imunologia , Infecção por Mycobacterium avium-intracellulare/imunologia , Deficiência de alfa 1-Antitripsina/imunologia , alfa 1-Antitripsina/imunologia , Autofagia/imunologia , Bronquiectasia/etiologia , Enfisema/etiologia , Humanos , Pneumopatias/imunologia , Pneumopatias/microbiologia , Ativação de Macrófagos/imunologia , Fagossomos/imunologia , Fator de Transcrição RelA/metabolismo , Deficiência de alfa 1-Antitripsina/patologia
15.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L475-L485, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313616

RESUMO

The alveolus participates in gas exchange, which can be impaired by environmental factors and toxins. There is an increase in using electronic cigarettes (e-cigarettes); however, their effect on human primary alveolar epithelial cells is unknown. Human lungs were obtained from nonsmoker organ donors to isolate alveolar type II (ATII) cells. ATII cells produce and secrete pulmonary surfactant and restore the epithelium after damage, and mitochondrial function is important for their metabolism. Our data indicate that human ATII cell exposure to e-cigarette aerosol increased IL-8 levels and induced DNA damage and apoptosis. We also studied the cytoprotective effect of DJ-1 against ATII cell injury. DJ-1 knockdown in human primary ATII cells sensitized cells to mitochondrial dysfunction as detected by high mitochondrial superoxide production, decreased mitochondrial membrane potential, and calcium elevation. DJ-1 knockout (KO) mice were more susceptible to ATII cell apoptosis and lung injury induced by e-cigarette aerosol compared with wild-type mice. Regulation of the oxidative phosphorylation (OXPHOS) is important for mitochondrial function and protection against oxidative stress. Major subunits of the OXPHOS system are encoded by both nuclear and mitochondrial DNA. We found dysregulation of OXPHOS complexes in DJ-1 KO mice after exposure to e-cigarette aerosol, which could disrupt the nuclear/mitochondrial stoichiometry, resulting in mitochondrial dysfunction. Together, our results indicate that DJ-1 deficiency sensitizes ATII cells to damage induced by e-cigarette aerosol leading to lung injury.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Interleucina-8/genética , Nicotina/farmacologia , Proteína Desglicase DJ-1/genética , Aerossóis , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Cálcio/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interleucina-8/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Cultura Primária de Células , Proteína Desglicase DJ-1/deficiência , Proteína Desglicase DJ-1/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Superóxidos/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L791-L804, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313618

RESUMO

Pulmonary emphysema is characterized by alveolar type II (ATII) cell death, destruction of alveolar wall septa, and irreversible airflow limitation. Cigarette smoke induces oxidative stress and is the main risk factor for this disease development. ATII cells isolated from nonsmokers, smokers, and patients with emphysema were used for this study. ATII cell apoptosis in individuals with this disease was detected. DJ-1 and S100A8 have cytoprotective functions against oxidative stress-induced cell injury. Reduced DJ-1 and S100A8 interaction was found in ATII cells in patients with emphysema. The molecular function of S100A8 was determined by an analysis of the oxidation status of its cysteine residues using chemoselective probes. Decreased S100A8 sulfination was observed in emphysema patients. In addition, its lower levels correlated with higher cell apoptosis induced by cigarette smoke extract in vitro. Cysteine at position 106 within DJ-1 is a central redox-sensitive residue. DJ-1 C106A mutant construct abolished the cytoprotective activity of DJ-1 against cell injury induced by cigarette smoke extract. Furthermore, a molecular and complementary relationship between DJ-1 and S100A8 was detected using gain- and loss-of-function studies. DJ-1 knockdown sensitized cells to apoptosis induced by cigarette smoke extract, and S100A8 overexpression provided cytoprotection in the absence of DJ-1. DJ-1 knockout mice were more susceptible to ATII cell apoptosis induced by cigarette smoke compared with wild-type mice. Our results indicate that the impairment of DJ-1 and S100A8 function may contribute to cigarette smoke-induced ATII cell injury and emphysema pathogenesis.


Assuntos
Células Epiteliais Alveolares/patologia , Apoptose , Calgranulina A/metabolismo , Proteína Desglicase DJ-1/metabolismo , Alvéolos Pulmonares/patologia , Enfisema Pulmonar/patologia , Idoso , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Calgranulina A/genética , Citoproteção , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estresse Oxidativo , Proteína Desglicase DJ-1/genética , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos
17.
J Clin Invest ; 129(5): 2107-2122, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985294

RESUMO

Alveolar epithelium plays a pivotal role in protecting the lungs from inhaled infectious agents. Therefore, the regenerative capacity of the alveolar epithelium is critical for recovery from these insults in order to rebuild the epithelial barrier and restore pulmonary functions. Here, we show that sublethal infection of mice with Streptococcus pneumoniae, the most common pathogen of community-acquired pneumonia, led to exclusive damage in lung alveoli, followed by alveolar epithelial regeneration and resolution of lung inflammation. We show that surfactant protein C-expressing (SPC-expressing) alveolar epithelial type II cells (AECIIs) underwent proliferation and differentiation after infection, which contributed to the newly formed alveolar epithelium. This increase in AECII activities was correlated with increased nuclear expression of Yap and Taz, the mediators of the Hippo pathway. Mice that lacked Yap/Taz in AECIIs exhibited prolonged inflammatory responses in the lung and were delayed in alveolar epithelial regeneration during bacterial pneumonia. This impaired alveolar epithelial regeneration was paralleled by a failure to upregulate IκBa, the molecule that terminates NF-κB-mediated inflammatory responses. These results demonstrate that signals governing resolution of lung inflammation were altered in Yap/Taz mutant mice, which prevented the development of a proper regenerative niche, delaying repair and regeneration of alveolar epithelium during bacterial pneumonia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais Alveolares/citologia , Proteínas de Ciclo Celular/metabolismo , Pneumonia Pneumocócica/patologia , Proteína C Associada a Surfactante Pulmonar/metabolismo , Transativadores/metabolismo , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Proliferação de Células , Células Epiteliais/metabolismo , Epitélio/microbiologia , Células HEK293 , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Regeneração , Transdução de Sinais , Células-Tronco/citologia , Streptococcus pneumoniae , Proteínas de Sinalização YAP
18.
Am J Respir Cell Mol Biol ; 61(4): 481-491, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30917006

RESUMO

The discovery of mutant tyrosine kinases as oncogenic drivers of lung adenocarcinomas has changed the basic understanding of lung cancer development and therapy. Yet, expressed kinases (kinome) in lung cancer progenitor cells, as well as whether kinase expression and the overall kinome changes or is reprogrammed upon transformation, is incompletely understood. We hypothesized that the kinome differs between lung cancer progenitor cells, alveolar type II cells (ATII), and basal cells (BC) and that their respective kinomes undergo distinct lineage-specific reprogramming to adenocarcinomas and squamous cell carcinomas upon transformation. We performed RNA sequencing on freshly isolated human ATII, BC, and lung cancer cell lines to define the kinome in nontransformed cells and transformed cells. Our studies identified a unique kinome for ATII and BC and changes in their kinome upon transformation to their respective carcinomas.


Assuntos
Células-Tronco Adultas/enzimologia , Células Epiteliais Alveolares/enzimologia , Transformação Celular Neoplásica , Neoplasias Pulmonares/enzimologia , Pulmão/enzimologia , Proteínas de Neoplasias/análise , Proteínas Tirosina Quinases/análise , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Animais , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/genética , Linhagem da Célula , Células Cultivadas , Indução Enzimática , Humanos , Pulmão/citologia , Neoplasias Pulmonares/genética , Camundongos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/enzimologia , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/genética , RNA Mensageiro/análise , RNA Neoplásico/análise , Transcriptoma
19.
Sci Rep ; 9(1): 920, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696938

RESUMO

Emphysema is characterized by alveolar wall destruction induced mainly by cigarette smoke. Oxidative damage of DNA may contribute to the pathophysiology of this disease. We studied the impairment of the non-homologous end joining (NHEJ) repair pathway and DNA damage in alveolar type II (ATII) cells and emphysema development. We isolated primary ATII cells from control smokers, nonsmokers, and patients with emphysema to determine DNA damage and repair. We found higher reactive oxygen species generation and DNA damage in ATII cells obtained from individuals with this disease  in comparison with controls. We also observed low phosphorylation of H2AX, which activates DSBs repair signaling, in emphysema. Our results indicate the impairement  of NHEJ, as detected by low XLF expression. We also analyzed the role of DJ-1, which has a cytoprotective activity. We detected DJ-1 and  XLF interaction in ATII cells in emphysema, which suggests the impairment of their function. Moreover, we found that DJ-1 KO mice are more susceptible to DNA damage induced by cigarette smoke. Our results suggest that oxidative DNA damage and ineffective the DSBs repair via the impaired NHEJ may contribute to ATII cell death in emphysema.


Assuntos
Células Epiteliais Alveolares/metabolismo , Reparo do DNA por Junção de Extremidades , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Animais , Biomarcadores , Dano ao DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Expressão Gênica , Humanos , Camundongos , Estresse Oxidativo , Ligação Proteica , Enfisema Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Fumar/efeitos adversos
20.
Am J Respir Cell Mol Biol ; 60(3): 299-307, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30277795

RESUMO

Pulmonary emphysema is characterized by alveolar wall destruction, and cigarette smoking is the main risk factor in this disease development. S100A8 is a member of the S100 protein family, with an oxidative stress-related and antiinflammatory role. The mechanisms of human alveolar type II (ATII) cell injury contributing to emphysema pathophysiology are not completely understood. We wanted to determine whether S100A8 can protect ATII cells against injury induced by cigarette smoke and this disease development. We used freshly isolated ATII cells from nonsmoking and smoking organ donors, as well as patients with emphysema to determine S100A8 function. S100A8 protein and mRNA levels were low in individuals with this disease and correlated with its severity as determined by using lung tissue from areas with mild and severe emphysema obtained from the same patient. Its expression negatively correlated with high oxidative stress as observed by 4-hydroxynonenal levels. We also detected decreased serine phosphorylation within S100A8 by PKAα in this disease. This correlated with increased S100A8 ubiquitination by SYVN1. Moreover, we cultured ATII cells isolated from nonsmokers followed by treatment with cigarette smoke extract. We found that this exposure upregulated S100A8 expression. We also confirmed the cytoprotective role of S100A8 against cell injury using gain- and loss-of-function approaches in vitro. S100A8 knockdown sensitized cells to apoptosis induced by cigarette smoke. In contrast, S100A8 overexpression rescued cell injury. Our results suggest that S100A8 protects ATII cells against injury and cigarette smoke-induced emphysema. Targeting S100A8 may provide a potential therapeutic strategy for this disease.


Assuntos
Células Epiteliais Alveolares/metabolismo , Calgranulina A/metabolismo , Alvéolos Pulmonares/metabolismo , Enfisema Pulmonar/metabolismo , Células A549 , Idoso , Aldeídos/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Fumar Cigarros/efeitos adversos , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , RNA Mensageiro/metabolismo , Nicotiana/efeitos adversos , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA