Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808129

RESUMO

Mutations in the Crumbs homologue 1 (CRB1) gene cause inherited retinal dystrophies, such as early-onset retinitis pigmentosa and Leber congenital amaurosis. A Brown Norway rat strain was reported with a spontaneous insertion-deletion (indel) mutation in exon 6 of Crb1. It has been reported that these Crb1 mutant rats show vascular abnormalities associated with retinal telangiectasia and possess an early-onset retinal degenerative phenotype with outer limiting membrane breaks and focal loss of retinal lamination at 2 months of age. Here, we further characterized the morphological phenotype of new-born and adult Crb1 mutant rats in comparison with age-matched Brown Norway rats without a mutation in Crb1. A significantly decreased retinal function and visual acuity was observed in Crb1 mutant rats at 1 and 3 months of age, respectively. Moreover, in control rats, the subcellular localization of canonical CRB1 was observed at the subapical region in Müller glial cells while CRB2 was observed at the subapical region in both photoreceptors and Müller glial cells by immuno-electron microscopy. CRB1 localization was lost in the Crb1 mutant rats, whereas CRB2 was still observed. In addition, we determined the tropism of subretinal or intravitreally administered AAV5-, AAV9- or AAV6-variant ShH10Y445F vectors in new-born control and Crb1 mutant rat retinas. We showed that subretinal injection of AAV5 and AAV9 at postnatal days 5 (P5) or 8 (P8) predominantly infected the retinal pigment epithelium (RPE) and photoreceptor cells; while intravitreal injection of ShH10Y445F at P5 or P8 resulted in efficient infection of mainly Müller glial cells. Using knowledge of the subcellular localization of CRB1 and the ability of ShH10Y445F to infect Müller glial cells, canonical hCRB1 and hCRB2 AAV-mediated gene therapy were explored in new-born Crb1 mutant rats. Enhanced retinal function after gene therapy delivery in the Crb1 rat was not observed. No timely rescue of the retinal phenotype was observed using retinal function and visual acuity, suggesting the need for earlier onset of expression of recombinant hCRB proteins in Müller glial cells to rescue the severe retinal phenotype in Crb1 mutant rats.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Dependovirus/fisiologia , Terapia Genética/métodos , Proteínas do Tecido Nervoso/genética , Distrofias Retinianas/genética , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Dependovirus/genética , Células Ependimogliais/metabolismo , Proteínas do Olho/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Injeções Intravítreas , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Ratos , Ratos Mutantes , Retina/fisiopatologia , Distrofias Retinianas/etiologia , Distrofias Retinianas/terapia , Epitélio Pigmentado da Retina/metabolismo , Tropismo Viral
2.
Virchows Arch ; 479(2): 265-275, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33559740

RESUMO

Tuberculosis (TB) is the most prevalent bacterial infectious disease in the world, caused by the pathogen Mycobacterium tuberculosis (Mtb). In this study, we have used Mycobacterium marinum (Mm) infection in zebrafish larvae as an animal model for this disease to study the role of the myeloid differentiation factor 88 (Myd88), the key adapter protein of Toll-like receptors. Previously, Myd88 has been shown to enhance innate immune responses against bacterial infections, and in the present study, we have investigated the effect of Myd88 deficiency on the granuloma morphology and the intracellular distribution of bacteria during Mm infection. Our results show that granulomas formed in the tail fin from myd88 mutant larvae have a more compact structure and contain a reduced number of leukocytes compared to the granulomas observed in wild-type larvae. These morphological differences were associated with an increased bacterial burden in the myd88 mutant. Electron microscopy analysis showed that the majority of Mm in the myd88 mutant are located extracellularly, whereas in the wild type, most bacteria were intracellular. In the myd88 mutant, intracellular bacteria were mainly present in compartments that were not electron-dense, suggesting that these compartments had not undergone fusion with a lysosome. In contrast, approximately half of the intracellular bacteria in wild-type larvae were found in electron-dense compartments. These observations in a zebrafish model for tuberculosis suggest a role for Myd88-dependent signalling in two important phenomena that limit mycobacterial growth in the infected tissue. It reduces the number of leukocytes at the site of infection and the acidification of bacteria-containing compartments inside these cells.


Assuntos
Granuloma/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/crescimento & desenvolvimento , Fator 88 de Diferenciação Mieloide/metabolismo , Tuberculose/microbiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/microbiologia , Animais , Animais Geneticamente Modificados , Carga Bacteriana , Modelos Animais de Doenças , Granuloma/genética , Granuloma/metabolismo , Granuloma/patologia , Concentração de Íons de Hidrogênio , Leucócitos/metabolismo , Leucócitos/microbiologia , Leucócitos/ultraestrutura , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/ultraestrutura , Microscopia Eletrônica de Transmissão , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/metabolismo , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium marinum/ultraestrutura , Fator 88 de Diferenciação Mieloide/genética , Transdução de Sinais , Tuberculose/genética , Tuberculose/metabolismo , Tuberculose/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
3.
Front Chem ; 8: 628433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33644004

RESUMO

Cathepsin S is a lysosomal cysteine protease highly expressed in immune cells such as dendritic cells, B cells and macrophages. Its functions include extracellular matrix breakdown and cleavage of cell adhesion molecules to facilitate immune cell motility, as well as cleavage of the invariant chain during maturation of major histocompatibility complex II. The identification of these diverse specific functions has brought the challenge of delineating cathepsin S activity with great spatial precision, relative to related enzymes and substrates. Here, the development of a potent and highly selective two-step activity-based probe for cathepsin S and the application in multicolor bio-orthogonal correlative light-electron microscopy is presented. LHVS, which has been reported as a selective inhibitor of cathepsin S with nanomolar potency, formed the basis for our probe design. However, in competitive activity-based protein profiling experiments LHVS showed significant cross-reactivity toward Cat L. Introduction of an azide group in the P2 position expanded the selectivity window for cathepsin S, but rendered the probe undetectable, as demonstrated in bio-orthogonal competitive activity-based protein profiling. Incorporation of an additional azide handle for click chemistry on the solvent-exposed P1 position allowed for selective labeling of cathepsin S. This highlights the influence of click handle positioning on probe efficacy. This probe was utilized in multicolor bio-orthogonal confocal and correlative light-electron microscopy to investigate the localization of cathepsin S activity at an ultrastructural level in bone marrow-derived dendritic cells. The tools developed in this study will aid the characterization of the variety of functions of cathepsin S throughout biology.

4.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438467

RESUMO

Variations in the Crumbs homolog-1 (CRB1) gene are associated with a wide variety of autosomal recessive retinal dystrophies, including early onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). CRB1 belongs to the Crumbs family, which in mammals includes CRB2 and CRB3. Here, we studied the specific roles of CRB2 in rod photoreceptor cells and whether ablation of CRB2 in rods exacerbates the Crb1-disease. Therefore, we assessed the morphological, retinal, and visual functional consequences of specific ablation of CRB2 from rods with or without concomitant loss of CRB1. Our data demonstrated that loss of CRB2 in mature rods resulted in RP. The retina showed gliosis and disruption of the subapical region and adherens junctions at the outer limiting membrane. Rods were lost at the peripheral and central superior retina, while gross retinal lamination was preserved. Rod function as measured by electroretinography was impaired in adult mice. Additional loss of CRB1 exacerbated the retinal phenotype leading to an early reduction of the dark-adapted rod photoreceptor a-wave and reduced contrast sensitivity from 3-months-of-age, as measured by optokinetic tracking reflex (OKT) behavior testing. The data suggest that CRB2 present in rods is required to prevent photoreceptor degeneration and vision loss.


Assuntos
Sensibilidades de Contraste/fisiologia , Amaurose Congênita de Leber/metabolismo , Proteínas de Membrana/metabolismo , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Sensibilidades de Contraste/genética , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Amaurose Congênita de Leber/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia
5.
Stem Cell Reports ; 12(5): 906-919, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30956116

RESUMO

Human retinal organoids from induced pluripotent stem cells (hiPSCs) can be used to confirm the localization of proteins in retinal cell types and to test transduction and expression patterns of gene therapy vectors. Here, we compared the onset of CRB protein expression in human fetal retina with human iPSC-derived retinal organoids. We show that CRB2 protein precedes the expression of CRB1 in the developing human retina. Our data suggest the presence of CRB1 and CRB2 in human photoreceptors and Müller glial cells. Thus the fetal CRB complex formation is replicated in hiPSC-derived retina. CRB1 patient iPSC retinal organoids showed disruptions at the outer limiting membrane as found in Crb1 mutant mice. Furthermore, AAV serotype 5 (AAV5) is potent in infecting human Müller glial cells and photoreceptors in hiPSC-derived retinas and retinal explants. Our data suggest that human photoreceptors can be efficiently transduced by AAVs in the presence of photoreceptor segments.


Assuntos
Proteínas de Transporte/metabolismo , Células Ependimogliais/metabolismo , Proteínas do Olho/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Organoides/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Adulto , Proteínas de Transporte/genética , Células Cultivadas , Dependovirus/genética , Células Ependimogliais/citologia , Células Ependimogliais/ultraestrutura , Proteínas do Olho/genética , Feminino , Feto , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas de Membrana/genética , Microscopia Imunoeletrônica , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/genética , Organoides/citologia , Células Fotorreceptoras de Vertebrados/ultraestrutura , Gravidez , Retina/citologia , Retina/embriologia
6.
Sci Rep ; 9(1): 1369, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718653

RESUMO

Sample fixation by vitrification is critical for the optimal structural preservation of biomolecules and subsequent high-resolution imaging by cryo-correlative light and electron microscopy (cryoCLEM). There is a large resolution gap between cryo fluorescence microscopy (cryoFLM), ~400-nm, and the sub-nanometre resolution achievable with cryo-electron microscopy (cryoEM), which hinders interpretation of cryoCLEM data. Here, we present a general approach to increase the resolution of cryoFLM using cryo-super-resolution (cryoSR) microscopy that is compatible with successive cryoEM investigation in the same region. We determined imaging parameters to avoid devitrification of the cryosamples without the necessity for cryoprotectants. Next, we examined the applicability of various fluorescent proteins (FPs) for single-molecule localisation cryoSR microscopy and found that all investigated FPs display reversible photoswitchable behaviour, and demonstrated cryoSR on lipid nanotubes labelled with rsEGFP2 and rsFastLime. Finally, we performed SR-cryoCLEM on mammalian cells expressing microtubule-associated protein-2 fused to rsEGFP2 and performed 3D cryo-electron tomography on the localised areas. The method we describe exclusively uses commercially available equipment to achieve a localisation precision of 30-nm. Furthermore, all investigated FPs displayed behaviour compatible with cryoSR microscopy, making this technique broadly available without requiring specialised equipment and will improve the applicability of this emerging technique for cellular and structural biology.


Assuntos
Microscopia Crioeletrônica , Proteínas de Fluorescência Verde/metabolismo , Mamíferos/metabolismo , Microscopia de Fluorescência , Animais , Linhagem Celular Tumoral , Humanos , Lasers , Lipídeos/química , Nanotubos/química , Nanotubos/ultraestrutura , Vitrificação
7.
Hum Mol Genet ; 28(1): 105-123, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239717

RESUMO

Variations in the human Crumbs homolog-1 (CRB1) gene lead to an array of retinal dystrophies including early onset of retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) in children. To investigate the physiological roles of CRB1 and CRB2 in retinal Müller glial cells (MGCs), we analysed mouse retinas lacking both proteins in MGC. The peripheral retina showed a faster progression of dystrophy than the central retina. The central retina showed retinal folds, disruptions at the outer limiting membrane, protrusion of photoreceptor nuclei into the inner and outer segment layers and ingression of photoreceptor nuclei into the photoreceptor synaptic layer. The peripheral retina showed a complete loss of the photoreceptor synapse layer, intermingling of photoreceptor nuclei within the inner nuclear layer and ectopic photoreceptor cells in the ganglion cell layer. Electroretinography showed severe attenuation of the scotopic a-wave at 1 month of age with responses below detection levels at 3 months of age. The double knockout mouse retinas mimicked a phenotype equivalent to a clinical LCA phenotype due to loss of CRB1. Localization of CRB1 and CRB2 in non-human primate (NHP) retinas was analyzed at the ultrastructural level. We found that NHP CRB1 and CRB2 proteins localized to the subapical region adjacent to adherens junctions at the outer limiting membrane in MGC and photoreceptors. Our data suggest that loss of CRB2 in MGC aggravates the CRB1-associated RP-like phenotype towards an LCA-like phenotype.


Assuntos
Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Retinose Pigmentar/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Modelos Animais de Doenças , Eletrorretinografia , Células Ependimogliais/metabolismo , Células Ependimogliais/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Macaca fascicularis , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/fisiologia , Fenótipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Distrofias Retinianas/metabolismo , Retinose Pigmentar/metabolismo , Retinose Pigmentar/fisiopatologia
8.
Arterioscler Thromb Vasc Biol ; 38(7): 1549-1561, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880488

RESUMO

OBJECTIVE: Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. APPROACH AND RESULTS: In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3-/-), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3-/- BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3-/- BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3-/- BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). CONCLUSIONS: Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.


Assuntos
Células Endoteliais/metabolismo , Exocitose , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Proteínas Qa-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Células Endoteliais/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mutação , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/metabolismo , Via Secretória , Transdução de Sinais , Corpos de Weibel-Palade/ultraestrutura
9.
Stem Cell Reports ; 10(3): 751-765, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29503086

RESUMO

Human pluripotent stem cell (hPSC)-derived kidney organoids may facilitate disease modeling and the generation of tissue for renal replacement. Long-term application, however, will require transferability between hPSC lines and significant improvements in organ maturation. A key question is whether time or a patent vasculature is required for ongoing morphogenesis. Here, we show that hPSC-derived kidney organoids, derived in fully defined medium conditions and in the absence of any exogenous vascular endothelial growth factor, develop host-derived vascularization. In vivo imaging of organoids under the kidney capsule confirms functional glomerular perfusion as well as connection to pre-existing vascular networks in the organoids. Wide-field electron microscopy demonstrates that transplantation results in formation of a glomerular basement membrane, fenestrated endothelial cells, and podocyte foot processes. Furthermore, compared with non-transplanted organoids, polarization and segmental specialization of tubular epithelium are observed. These data demonstrate that functional vascularization is required for progressive morphogenesis of human kidney organoids.


Assuntos
Glomérulos Renais/fisiologia , Túbulos Renais/fisiologia , Organoides/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Endoteliais/fisiologia , Humanos , Transplante de Rim/métodos , Camundongos , Morfogênese/fisiologia , Podócitos/fisiologia
10.
Neurobiol Aging ; 62: 231-242, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29195086

RESUMO

Previous MRI studies reported cortical iron accumulation in early-onset (EOAD) compared to late-onset (LOAD) Alzheimer disease patients. However, the pattern and origin of iron accumulation is poorly understood. This study investigated the histopathological correlates of MRI contrast in both EOAD and LOAD. T2*-weighted MRI was performed on postmortem frontal cortex of controls, EOAD, and LOAD. Images were ordinally scored using predefined criteria followed by histology. Nonlinear histology-MRI registration was used to calculate pixel-wise spatial correlations based on the signal intensity. EOAD and LOAD were distinguishable based on 7T MRI from controls and from each other. Histology-MRI correlation analysis of the pixel intensities showed that the MRI contrast is best explained by increased iron accumulation and changes in cortical myelin, whereas amyloid and tau showed less spatial correspondence with T2*-weighted MRI. Neuropathologically, subtypes of Alzheimer's disease showed different patterns of iron accumulation and cortical myelin changes independent of amyloid and tau that may be detected by high-field susceptibility-based MRI.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Imagem de Difusão por Ressonância Magnética , Ferro/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Autopsia , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas tau/metabolismo
11.
mBio ; 8(6)2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162711

RESUMO

Betacoronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), are important pathogens causing potentially lethal infections in humans and animals. Coronavirus RNA synthesis is thought to be associated with replication organelles (ROs) consisting of modified endoplasmic reticulum (ER) membranes. These are transformed into double-membrane vesicles (DMVs) containing viral double-stranded RNA and into other membranous elements such as convoluted membranes, together forming a reticulovesicular network. Previous evidence suggested that the nonstructural proteins (nsp's) 3, 4, and 6 of the severe acute respiratory syndrome coronavirus (SARS-CoV), which contain transmembrane domains, would all be required for DMV formation. We have now expressed MERS-CoV replicase self-cleaving polyprotein fragments encompassing nsp3-4 or nsp3-6, as well as coexpressed nsp3 and nsp4 of either MERS-CoV or SARS-CoV, to characterize the membrane structures induced. Using electron tomography, we demonstrate that for both MERS-CoV and SARS-CoV coexpression of nsp3 and nsp4 is required and sufficient to induce DMVs. Coexpression of MERS-CoV nsp3 and nsp4 either as individual proteins or as a self-cleaving nsp3-4 precursor resulted in very similar DMVs, and in both setups we observed proliferation of zippered ER that appeared to wrap into nascent DMVs. Moreover, when inactivating nsp3-4 polyprotein cleavage by mutagenesis, we established that cleavage of the nsp3/nsp4 junction is essential for MERS-CoV DMV formation. Addition of the third MERS-CoV transmembrane protein, nsp6, did not noticeably affect DMV formation. These findings provide important insight into the biogenesis of coronavirus DMVs, establish strong similarities with other nidoviruses (specifically, the arteriviruses), and highlight possible general principles in viral DMV formation.IMPORTANCE The RNA replication of positive stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles (ROs). Double-membrane vesicles are a prominent type of viral ROs. They are induced by coronaviruses, such as SARS-CoV and MERS-CoV, as well as by a number of other important pathogens, yet little is known about their biogenesis. In this study, we explored the viral protein requirements for the formation of MERS-CoV- and SARS-CoV-induced DMVs and established that coexpression of two of the three transmembrane subunits of the coronavirus replicase polyprotein, nonstructural proteins (nsp's) 3 and 4, is required and sufficient to induce DMV formation. Moreover, release of nsp3 and nsp4 from the polyprotein by proteolytic maturation is essential for this process. These findings provide a strong basis for further research on the biogenesis and functionality of coronavirus ROs and may point to more general principles of viral DMV formation.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Linhagem Celular , Vesículas Citoplasmáticas/ultraestrutura , Vesículas Citoplasmáticas/virologia , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/virologia , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Biogênese de Organelas , Proteólise , Proteínas não Estruturais Virais/metabolismo
12.
Cell Rep ; 21(3): 587-599, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045829

RESUMO

Enteroviruses reorganize cellular endomembranes into replication organelles (ROs) for genome replication. Although enterovirus replication depends on phosphatidylinositol 4-kinase type IIIß (PI4KB), its role, and that of its product, phosphatidylinositol 4-phosphate (PI4P), is only partially understood. Exploiting a mutant coxsackievirus resistant to PI4KB inhibition, we show that PI4KB activity has distinct functions both in proteolytic processing of the viral polyprotein and in RO biogenesis. The escape mutation rectifies a proteolytic processing defect imposed by PI4KB inhibition, pointing to a possible escape mechanism. Remarkably, under PI4KB inhibition, the mutant virus could replicate its genome in the absence of ROs, using instead the Golgi apparatus. This impaired RO biogenesis provided an opportunity to investigate the proposed role of ROs in shielding enteroviral RNA from cellular sensors. Neither accelerated sensing of viral RNA nor enhanced innate immune responses was observed. Together, our findings challenge the notion that ROs are indispensable for enterovirus genome replication and immune evasion.


Assuntos
Enterovirus/genética , Enterovirus/fisiologia , Genoma Viral/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Organelas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , Replicação Viral , Antivirais/metabolismo , Enterovirus/crescimento & desenvolvimento , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Proteólise , Proteínas Virais/metabolismo
13.
Am J Respir Cell Mol Biol ; 57(5): 536-546, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28613916

RESUMO

During severe influenza A virus (IAV) infections, a large amount of damage to the pulmonary epithelium is the result of the antiviral immune response. Specifically, whilst CD8+ T cells are important for killing IAV-infected cells, during a severe IAV infection, they can damage uninfected epithelial cells. At present, the mechanisms by which this occurs are unclear. Here, we used a novel in vitro coculture model of human NCl-H441 cells and CD8+ T cells to provide a new insight into how CD8+ T cells may affect uninfected epithelial cells during severe IAV infections. Using this model, we show that human IAV-specific CD8+ T cells produce soluble factors that reduce the barrier integrity of noninfected epithelial cells (referred to as "bystander damage"). We show that this bystander damage is the result of a combination of TNF-α and IFN-γ. This bystander damage occurred in the absence of widespread epithelial cell death and was instead associated with decreased expression of epithelial cell ion channels and pumps. Together, these data suggest that ameliorating the function of epithelial cell ion channels and pumps may help reduce immunopathology during severe IAV infections.


Assuntos
Linfócitos T CD8-Positivos/virologia , Células Epiteliais/virologia , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/virologia , Pulmão/virologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Pulmão/patologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Virus Res ; 220: 70-90, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27071852

RESUMO

All eukaryotic positive-stranded RNA (+RNA) viruses appropriate host cell membranes and transform them into replication organelles, specialized micro-environments that are thought to support viral RNA synthesis. Arteriviruses (order Nidovirales) belong to the subset of +RNA viruses that induce double-membrane vesicles (DMVs), similar to the structures induced by e.g. coronaviruses, picornaviruses and hepatitis C virus. In the last years, electron tomography has revealed substantial differences between the structures induced by these different virus groups. Arterivirus-induced DMVs appear to be closed compartments that are continuous with endoplasmic reticulum membranes, thus forming an extensive reticulovesicular network (RVN) of intriguing complexity. This RVN is remarkably similar to that described for the distantly related coronaviruses (also order Nidovirales) and sets them apart from other DMV-inducing viruses analysed to date. We review here the current knowledge and open questions on arterivirus replication organelles and discuss them in the light of the latest studies on other DMV-inducing viruses, particularly coronaviruses. Using the equine arteritis virus (EAV) model system and electron tomography, we present new data regarding the biogenesis of arterivirus-induced DMVs and uncover numerous putative intermediates in DMV formation. We generated cell lines that can be induced to express specific EAV replicase proteins and showed that DMVs induced by the transmembrane proteins nsp2 and nsp3 form an RVN and are comparable in topology and architecture to those formed during viral infection. Co-expression of the third EAV transmembrane protein (nsp5), expressed as part of a self-cleaving polypeptide that mimics viral polyprotein processing in infected cells, led to the formation of DMVs whose size was more homogenous and closer to what is observed upon EAV infection, suggesting a regulatory role for nsp5 in modulating membrane curvature and DMV formation.


Assuntos
Arterivirus/ultraestrutura , Membrana Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Organelas/ultraestrutura , Organelas/virologia , Proteínas não Estruturais Virais/genética , Animais , Arterivirus/genética , Arterivirus/metabolismo , Infecções por Arterivirus/veterinária , Infecções por Arterivirus/virologia , Linhagem Celular , Membrana Celular/virologia , Coronavirus/genética , Coronavirus/metabolismo , Coronavirus/ultraestrutura , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo
15.
Eur Respir J ; 47(3): 954-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26743480

RESUMO

A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial-endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear.Here, we used an in vitro co-culture model to understand how IAV damages the pulmonary epithelial-endothelial barrier. Human epithelial cells were seeded on the upper half of a transwell membrane while human endothelial cells were seeded on the lower half. These cells were then grown in co-culture and IAV was added to the upper chamber.We showed that the addition of IAV (H1N1 and H5N1 subtypes) resulted in significant barrier damage. Interestingly, we found that, while endothelial cells mounted a pro-inflammatory/pro-coagulant response to a viral infection in the adjacent epithelial cells, damage to the alveolar epithelial-endothelial barrier occurred independently of endothelial cells. Rather, barrier damage was associated with disruption of tight junctions amongst epithelial cells, and specifically with loss of tight junction protein claudin-4.Taken together, these data suggest that maintaining epithelial cell integrity is key in reducing pulmonary oedema during IAV infection.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Alvéolos Pulmonares/virologia , Junções Íntimas/ultraestrutura , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Células Epiteliais/patologia , Humanos
16.
Diabetes ; 64(8): 2928-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25918235

RESUMO

Loss of pancreatic islet ß-cell mass and ß-cell dysfunction are central in the development of type 2 diabetes (T2DM). We recently showed that mature human insulin-containing ß-cells can convert into glucagon-containing α-cells ex vivo. This loss of ß-cell identity was characterized by the presence of ß-cell transcription factors (Nkx6.1, Pdx1) in glucagon(+) cells. Here, we investigated whether the loss of ß-cell identity also occurs in vivo, and whether it is related to the presence of (pre)diabetes in humans and nonhuman primates. We observed an eight times increased frequency of insulin(+) cells coexpressing glucagon in donors with diabetes. Up to 5% of the cells that were Nkx6.1(+) but insulin(-) coexpressed glucagon, which represents a five times increased frequency compared with the control group. This increase in bihormonal and Nkx6.1(+)glucagon(+)insulin(-) cells was also found in islets of diabetic macaques. The higher proportion of bihormonal cells and Nkx6.1(+)glucagon(+)insulin(-) cells in macaques and humans with diabetes was correlated with the presence and extent of islet amyloidosis. These data indicate that the loss of ß-cell identity occurs in T2DM and could contribute to the decrease of functional ß-cell mass. Maintenance of ß-cell identity is a potential novel strategy to preserve ß-cell function in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Células Secretoras de Glucagon/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Placa Amiloide/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiopatologia , Macaca fascicularis , Macaca mulatta , Masculino , Placa Amiloide/metabolismo , Placa Amiloide/fisiopatologia
17.
Science ; 343(6176): 1260-3, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24626930

RESUMO

Complement activation by antibodies bound to pathogens, tumors, and self antigens is a critical feature of natural immune defense, a number of disease processes, and immunotherapies. How antibodies activate the complement cascade, however, is poorly understood. We found that specific noncovalent interactions between Fc segments of immunoglobulin G (IgG) antibodies resulted in the formation of ordered antibody hexamers after antigen binding on cells. These hexamers recruited and activated C1, the first component of complement, thereby triggering the complement cascade. The interactions between neighboring Fc segments could be manipulated to block, reconstitute, and enhance complement activation and killing of target cells, using all four human IgG subclasses. We offer a general model for understanding antibody-mediated complement activation and the design of antibody therapeutics with enhanced efficacy.


Assuntos
Membrana Celular/imunologia , Ativação do Complemento , Complemento C1/imunologia , Imunoglobulina G/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Lipossomos , Conformação Proteica , Multimerização Proteica
18.
J Cell Biol ; 198(3): 457-69, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22869601

RESUMO

A key obstacle in uncovering the orchestration between molecular and cellular events is the vastly different length scales on which they occur. We describe here a methodology for ultrastructurally mapping regions of cells and tissue as large as 1 mm(2) at nanometer resolution. Our approach employs standard transmission electron microscopy, rapid automated data collection, and stitching to create large virtual slides. It greatly facilitates correlative light-electron microscopy studies to relate structure and function and provides a genuine representation of ultrastructural events. The method is scalable as illustrated by slides up to 281 gigapixels in size. Here, we applied virtual nanoscopy in a correlative light-electron microscopy study to address the role of the endothelial glycocalyx in protein leakage over the glomerular filtration barrier, in an immunogold labeling study of internalization of oncolytic reovirus in human dendritic cells, in a cryo-electron microscopy study of intact vitrified mouse embryonic cells, and in an ultrastructural mapping of a complete zebrafish embryo slice.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Animais , Microscopia Crioeletrônica/métodos , Células Dendríticas/citologia , Células Endoteliais/citologia , Fibroblastos/citologia , Taxa de Filtração Glomerular , Glicocálix/química , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica , Fígado/metabolismo , Potenciais da Membrana , Camundongos , Mitocôndrias/metabolismo , Modelos Estatísticos , Nanotecnologia/métodos , Peixe-Zebra
19.
Chemistry ; 18(33): 10271-80, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22696438

RESUMO

The new ruthenium complex [Ru(terpy)(dcbpy)(Hmte)](PF(6))(2) ([2](PF(6))(2); dcbpy=6,6'-dichloro-2,2'-bipyridine, terpy=2,2';6',2"-terpyridine, Hmte=2-(methylthio)ethanol) was synthesized. In the crystal structure, this complex is highly distorted, revealing steric congestion between dcbpy and Hmte. In water, [2](2+) forms spontaneously by reacting Hmte and the aqua complex [Ru(terpy)(dcbpy)(OH(2))](2+) ([1](2+)), with a second-order rate constant of 0.025 s(-1) M(-1) at 25 °C. In the dark, the Ru-S bond of [2](2+) is thermally unstable and partially hydrolyzes; in fact, [1](2+) and [2](2+) are in an equilibrium characterized by an equilibrium constant K of 151 M(-1). When exposed to visible light, the Ru-S bond is selectively broken to release [1](2+), that is, the equilibrium is shifted by visible-light irradiation. The light-induced equilibrium shifts were repeated four times without major signs of degradation; the Ru-S coordination bond in [2](2+) can be described as a robust, light-sensitive, supramolecular bond in water. To demonstrate the potential of this system in supramolecular chemistry, a new thioether-cholesterol conjugate (4), which inserts into lipid bilayers through its cholesterol moiety and coordinates to ruthenium through its sulfur atom, was synthesized. Thioether-functionalized, anionic, dimyristoylphosphatidylglycerol (DMPG), lipid vesicles, to which aqua complex [1](2+) efficiently coordinates, were prepared. Upon exposure of the Ru-decorated vesicles to visible light, the Ru-S bond is selectively broken, thus releasing [1](2+) that stays at the water-bilayer interface. When the light is switched off, the metal complex spontaneously coordinates back to the membrane-embedded thioether ligands without a need to heat the system. This process was repeated four times at 35 °C, thus achieving light-triggered hopping of the metal complex at the water-bilayer interface.


Assuntos
Ânions/química , Complexos de Coordenação/química , Bicamadas Lipídicas/química , Piridinas/química , Rutênio/química , Cristalografia por Raios X , Ligantes , Luz , Estrutura Molecular , Fotoquímica
20.
mBio ; 2(5)2011.
Artigo em Inglês | MEDLINE | ID: mdl-21972238

RESUMO

UNLABELLED: All positive-strand RNA viruses induce membrane structures in their host cells which are thought to serve as suitable microenvironments for viral RNA synthesis. The structures induced by enteroviruses, which are members of the family Picornaviridae, have so far been described as either single- or double-membrane vesicles (DMVs). Aside from the number of delimiting membranes, their exact architecture has also remained elusive due to the limitations of conventional electron microscopy. In this study, we used electron tomography (ET) to solve the three-dimensional (3-D) ultrastructure of these compartments. At different time points postinfection, coxsackievirus B3-infected cells were high-pressure frozen and freeze-substituted for ET analysis. The tomograms showed that during the exponential phase of viral RNA synthesis, closed smooth single-membrane tubules constituted the predominant virus-induced membrane structure, with a minor proportion of DMVs that were either closed or connected to the cytosol in a vase-like configuration. As infection progressed, the DMV number steadily increased, while the tubular single-membrane structures gradually disappeared. Late in infection, complex multilamellar structures, previously unreported, became apparent in the cytoplasm. Serial tomography disclosed that their basic unit is a DMV, which is enwrapped by one or multiple cisternae. ET also revealed striking intermediate structures that strongly support the conversion of single-membrane tubules into double-membrane and multilamellar structures by a process of membrane apposition, enwrapping, and fusion. Collectively, our work unravels the sequential appearance of distinct enterovirus-induced replication structures, elucidates their detailed 3-D architecture, and provides the basis for a model for their transformation during the course of infection. IMPORTANCE: Positive-strand RNA viruses hijack specific intracellular membranes and remodel them into special structures that support viral RNA synthesis. The ultrastructural characterization of these "replication structures" is key to understanding their precise role. Here, we resolved the three-dimensional architecture of enterovirus-induced membranous compartments and their transformation in time by applying electron tomography to cells infected with coxsackievirus B3 (CVB3). Our results show that closed single-membrane tubules are the predominant initial virus-induced structure, whereas double-membrane vesicles (DMVs) become increasingly abundant at the expense of these tubules as infection progresses. Additionally, more complex multilamellar structures appear late in infection. Based on compelling intermediate structures in our tomograms, we propose a model for transformation from the tubules to DMVs and multilamellar structures via enwrapping events. Our work provides an in-depth analysis of the development of an unsuspected variety of distinct replication structures during the course of CVB3 infection.


Assuntos
Transformação Celular Viral , Enterovirus Humano B/fisiologia , Infecções por Enterovirus/virologia , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Replicação Viral , Animais , Chlorocebus aethiops , Tomografia com Microscopia Eletrônica , Enterovirus Humano B/genética , Humanos , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA