Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Life (Basel) ; 13(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37109484

RESUMO

Tatra chamois (Rupicapra rupicapra tatrica (Blahout 1972)) and Tatra marmot (Marmota marmota latirostris (Kratochvíl 1961)) are significant endemic subspecies of the subalpine and alpine ranges of the Tatra Mountains in Central Europe. In four studied localities in the range of their typical biotopes in Slovakia and Poland, we investigated intestinal parasites of Tatra chamois and Tatra marmots, with an emphasis on anoplocephalid tapeworms. We also studied the occurrence, species diversity, and abundance of oribatid mites as intermediate hosts thereof, and the prevalence of cysticercoid larval stages of anoplocephalid tapeworms in collected oribatids using morphological and molecular methods. Coprological analyses revealed the average positivity of Moniezia spp. in chamois faeces at 23.5% and Ctenotaenia marmotae in marmot samples at 71.1%, with significant differences between the localities under study. Morphological analyses determined the presence of cysticercoids in five oribatid species: Ceratozetes gracilis, Edwardzetes edwardsi, Scheloribates laevigatus, Trichoribates novus, and Tectocepheus velatus sarekensis. This is the first record of T. v. sarekensis as an intermediate host of anoplocephalid tapeworms, as well as the first report of Andrya cuniculi occurrence in the territory of the Tatra Mountains, confirmed also by molecular methods.

2.
Open Biol ; 11(3): 200407, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33715388

RESUMO

Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.


Assuntos
Euglenozoários/classificação , Ecossistema , Euglenozoários/genética , Euglenozoários/fisiologia , Euglenozoários/virologia , Mimiviridae/patogenicidade , Filogenia , Simbiose
3.
Viruses ; 12(2)2020 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024293

RESUMO

In this work, we describe the first Leishmania-infecting leishbunyavirus-the first virus other than Leishmania RNA virus (LRV) found in trypanosomatid parasites. Its host is Leishmaniamartiniquensis, a human pathogen causing infections with a wide range of manifestations from asymptomatic to severe visceral disease. This virus (LmarLBV1) possesses many characteristic features of leishbunyaviruses, such as tripartite organization of its RNA genome, with ORFs encoding RNA-dependent RNA polymerase, surface glycoprotein, and nucleoprotein on L, M, and S segments, respectively. Our phylogenetic analyses suggest that LmarLBV1 originated from leishbunyaviruses of monoxenous trypanosomatids and, probably, is a result of genomic re-assortment. The LmarLBV1 facilitates parasites' infectivity in vitro in primary murine macrophages model. The discovery of a virus in L.martiniquensis poses the question of whether it influences pathogenicity of this parasite in vivo, similarly to the LRV in other Leishmania species.


Assuntos
Genoma Viral , Leishmania/virologia , Filogenia , Vírus de RNA/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Leishmania/patogenicidade , Macrófagos/parasitologia , Camundongos , Fases de Leitura Aberta , Vírus de RNA/classificação , RNA Polimerase Dependente de RNA , Vírus Reordenados
4.
PLoS One ; 15(1): e0227832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945116

RESUMO

Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end).


Assuntos
Infecções por Euglenozoa/veterinária , Heterópteros/imunologia , Interações Hospedeiro-Parasita/fisiologia , Estágios do Ciclo de Vida/fisiologia , Trypanosomatina/crescimento & desenvolvimento , Animais , Resistência à Doença , Infecções por Euglenozoa/imunologia , Infecções por Euglenozoa/parasitologia , Hemolinfa/parasitologia , Heterópteros/parasitologia , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/parasitologia , Mucosa Intestinal/ultraestrutura , Microscopia Eletrônica , Trypanosomatina/patogenicidade , Trypanosomatina/ultraestrutura
5.
mBio ; 9(5)2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327446

RESUMO

In this work, we analyzed viral prevalence in trypanosomatid parasites (Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses). Most of the flagellate isolates bore two or three viral types (mixed infections). Although no new viral groups were documented in Blechomonas spp., our findings are important for the comprehension of viral evolution. The discovery of bunyaviruses in blechomonads was anticipated, since these viruses have envelopes facilitating their interspecific transmission and have already been found in various trypanosomatids and metatranscriptomes with trypanosomatid signatures. In this work, we also provided evidence that even representatives of the family Narnaviridae are capable of host switching and evidently have accomplished switches multiple times in the course of their evolution. The most unexpected finding was the presence of leishmaniaviruses, a group previously solely confined to the human pathogens Leishmania spp. From phylogenetic inferences and analyses of the life cycles of Leishmania and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most likely infected Leishmania first and was acquired by Blechomonas by horizontal transfer. Our findings demonstrate that evolution of leishmaniaviruses is more complex than previously thought and includes occasional host switching.IMPORTANCE Flagellates belonging to the genus Leishmania are important human parasites. Some strains of different Leishmania species harbor viruses (leishmaniaviruses), which facilitate metastatic spread of the parasites, thus aggravating the disease. Up until now, these viruses were known to be hosted only by Leishmania Here, we analyzed viral distribution in Blechomonas, a related group of flagellates parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings shed light on the entangled evolution of these viruses. In addition, we documented that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral groups known from other insects' flagellates.


Assuntos
Evolução Molecular , Leishmaniavirus/genética , Vírus de RNA/classificação , Trypanosomatina/virologia , Animais , Variação Genética , Genoma Viral , Filogenia , Vírus de RNA/isolamento & purificação , Sifonápteros/parasitologia
6.
PLoS One ; 13(9): e0204467, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30261003

RESUMO

Blastocrithidia papi is a unique trypanosomatid in that its life cycle is synchronized with that of its host, and includes an obligate stage of development in Malpighian tubules (MTs). This occurs in firebugs, which exited the winter diapause. In the short period, preceding the mating of overwintered insects, the flagellates penetrate MTs of the host, multiply attached to the epithelial surface with their flagella, and start forming cyst-like amastigotes (CLAs) in large agglomerates. By the moment of oviposition, a large number of CLAs are already available in the rectum. They are discharged on the eggs' surface with feces, used for transmission of bugs' symbiotic bacteria, which are compulsorily engulfed by the newly hatched nymphs along with the CLAs. The obligate development of B. papi in MTs is definitely linked to the life cycle synchronization. The absence of peristalsis allow the trypanosomatids to accumulate and form dense CLA-forming subpopulations, whereas the lack of peritrophic structures facilitates the extensive discharge of CLAs directly into the hindgut lumen. The massive release of CLAs associated with oviposition is indispensable for maximization of the infection efficiency at the most favorable time point.


Assuntos
Hemípteros/parasitologia , Interações Hospedeiro-Patógeno , Túbulos de Malpighi/parasitologia , Trypanosomatina/crescimento & desenvolvimento , Animais , Células Epiteliais/parasitologia , Células Epiteliais/ultraestrutura , Fezes/parasitologia , Hemípteros/ultraestrutura , Intestinos/parasitologia , Intestinos/ultraestrutura , Estágios do Ciclo de Vida , Túbulos de Malpighi/ultraestrutura , Oviposição , Trypanosomatina/ultraestrutura
7.
Mem. Inst. Oswaldo Cruz ; 113(4): e170487, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-894910

RESUMO

Viruses of trypanosomatids are now being extensively studied because of their diversity and the roles they play in flagellates' biology. Among the most prominent examples are leishmaniaviruses implicated in pathogenesis of Leishmania parasites. Here, we present a historical overview of this field, starting with early reports of virus-like particles on electron microphotographs, and culminating in detailed molecular descriptions of viruses obtained using modern next generation sequencing-based techniques. Because of their diversity, different life cycle strategies and host specificity, we believe that trypanosomatids are a fertile ground for further explorations to better understand viral evolution, routes of transitions, and molecular mechanisms of adaptation to different hosts.


Assuntos
Vírus de RNA , Trypanosomatina/virologia , Microscopia Eletrônica de Transmissão e Varredura , Leishmaniavirus/fisiologia , Especificidade de Hospedeiro
8.
PLoS Negl Trop Dis ; 11(7): e0005782, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742133

RESUMO

BACKGROUND: Leishmania virulence factors responsible for the complicated epidemiology of the various leishmaniases remain mainly unidentified. This study is a characterization of a gene previously identified as upregulated in two of three overlapping datasets containing putative factors important for Leishmania's ability to establish mammalian intracellular infection and to colonize the gut of an insect vector. METHODOLOGY/PRINCIPAL FINDINGS: The investigated gene encodes ATP/GTP binding motif-containing protein related to Leishmania development 1 (ALD1), a cytosolic protein that contains a cryptic ATP/GTP binding P-loop. We compared differentiation, growth rates, and infective abilities of wild-type and ALD1 null mutant cell lines of L. mexicana. Loss of ALD1 results in retarded growth kinetics but not defects in differentiation in axenic culture. Similarly, when mice and the sand fly vector were infected with the ALD1 null mutant, the primary difference in infection and colonization phenotype relative to wild type was an inability to achieve maximal host pathogenicity. While ability of the ALD1 null mutant cells to infect macrophages in vitro was not affected, replication within macrophages was clearly curtailed. CONCLUSIONS/SIGNIFICANCE: L. mexicana ALD1, encoding a protein with no assigned functional domains or motifs, was identified utilizing multiple comparative analyses with the related and often experimentally overlooked monoxenous flagellates. We found that it plays a role in Leishmania infection and colonization in vitro and in vivo. Results suggest that ALD1 functions in L. mexicana's general metabolic network, rather than function in specific aspect of virulence as anticipated from the compared datasets. This result validates our comparative genomics approach for finding relevant factors, yet highlights the importance of quality laboratory-based analysis of genes tagged by these methods.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Leishmania mexicana/patogenicidade , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Psychodidae/parasitologia , Animais , Feminino , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Insetos Vetores/parasitologia , Leishmania mexicana/genética , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Virulência
9.
Protist ; 168(4): 408-424, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28755578

RESUMO

Pelomyxa palustris is a giant anaerobic/microaerobic amoeba, characterized by a number of exceptional cytological and physiological features, among them the presumed absence of energy producing organelles and the presence of endosymbiotic bacteria. These endosymbionts have been previously distinguished as: a large rectangular-shaped Gram-variable rod with a central cleft; a slender Gram-negative rod; and a slender Gram-positive rod. Using DNA extracted from P. palustris cysts, we have obtained three SSU rRNA gene sequences. We have determined that these sequences are affiliated to three different prokaryotic genera: Methanosaeta (a methanogenic archaea), Syntrophorhabdus (a syntrophic Gram-negative bacteria) and Rhodococcus (an aerobic chemoorganotrophic Gram-positive bacteria). To our knowledge, it is the first time that Syntrophorhabdus has been described as an endosymbiont in association with a methanogen. Strikingly, no traces of Methanobacterium formicicum could be detected, despite this methanogen had allegedly been isolated from trophozoites of P. palustris. It seems that the host and the endosymbionts have established a multipartite syntrophic consortium resembling to some extent those found in sewage treatment plants.


Assuntos
Archamoebae/microbiologia , Deltaproteobacteria/fisiologia , Methanosarcinales/fisiologia , Rhodococcus/fisiologia , Simbiose , Archamoebae/fisiologia , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Methanosarcinales/classificação , Methanosarcinales/genética , Methanosarcinales/isolamento & purificação , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rhodococcus/classificação , Rhodococcus/genética , Rhodococcus/isolamento & purificação , Análise de Sequência de RNA
10.
Eur J Protistol ; 57: 85-98, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28073072

RESUMO

Blastocrithidia papi sp. n. is a cyst-forming trypanosomatid parasitizing firebugs (Pyrrhocoris apterus). It is a member of the Blastocrithidia clade and a very close relative of B. largi, to which it is almost identical through its SSU rRNA gene sequence. However, considering the SL RNA gene these two species represent quite distinct, not even related typing units. Morphological analysis of the new species revealed peculiar or even unique features, which may be useful for future taxonomic revision of the genus Blastocrithidia. These include a breach in the microtubular corset of rostrum at the site of contact with the flagellum, absence of desmosomes between flagellum and rostrum, large transparent vacuole near the flagellar pocket, and multiple vacuoles with fibrous content in the posterior portion of the cell. The study of the flagellates' behavior in the host intestine revealed that they may attach both to microvilli of enterocytes using swollen flagellar tip and to extracellular membranes layers using hemidesmosomes of flagellum. Laboratory experiments on B. papi transmission in P. apterus demonstrated that the parasite may be transmitted vertically (via contaminated surface of eggs) and horizontally (via contaminated substrate and/or necrophagy). We argue that the parasite exploits transmission mechanisms intended for obligate bacterial symbionts of P. apterus.


Assuntos
Heterópteros/parasitologia , Estágios do Ciclo de Vida , Trypanosomatina/citologia , Trypanosomatina/fisiologia , Animais , Heterópteros/microbiologia , Intestinos/parasitologia , Trypanosomatina/classificação
11.
J Eukaryot Microbiol ; 63(2): 198-209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26352484

RESUMO

In this study, we surveyed six species of cockroaches, two synanthropic (i.e. ecologically associated with humans) and four wild, for intestinal trypanosomatid infections. Only the wild cockroach species were found to be infected, with flagellates of the genus Herpetomonas. Two distinct genotypes were documented, one of which was described as a new species, Herpetomonas tarakana sp. n. We also propose a revision of the genus Herpetomonas and creation of a new subfamily, Phytomonadinae, to include Herpetomonas, Phytomonas, and a newly described genus Lafontella n. gen. (type species Lafontella mariadeanei comb. n.), which can be distinguished from others by morphological and molecular traits.


Assuntos
Baratas/parasitologia , Trypanosomatina/classificação , Animais , Biodiversidade , República Tcheca , DNA de Protozoário/genética , Genótipo , Microscopia Eletrônica de Transmissão , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Eslováquia , Trypanosomatina/genética , Trypanosomatina/isolamento & purificação , Trypanosomatina/ultraestrutura
12.
Mem. Inst. Oswaldo Cruz ; 110(8): 956-965, Dec. 2015. graf
Artigo em Inglês | LILACS | ID: lil-769828

RESUMO

The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.


Assuntos
Biodiversidade , DNA de Protozoário/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Kinetoplastida/genética , Filogenia , RNA de Protozoário/genética , Biomarcadores , Biologia Computacional , Bases de Dados Genéticas , Código de Barras de DNA Taxonômico/tendências , Meio Ambiente , Kinetoplastida/classificação , Kinetoplastida/citologia , Metagenômica/tendências , /genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA