Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 28(8): 191, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37664948

RESUMO

BACKGROUND: The chromosome 1q12 region harbors the genome's largest pericentromeric heterochromatin domain that includes tandemly repeated satellite III DNA [SatIII (1)]. Increased SatIII (1) copy numbers have been found in cultured human skin fibroblasts (HSFs) during replicative senescence. The aim of this study was to analyze the variation in SatIII (1) abundance in cultured HSFs at early passages depending on the levels of endogenous and exogenous stress. METHODS: We studied 10 HSF cell lines with either high (HSFs from schizophrenic cases, n = 5) or low (HSFs from healthy controls, n = 5) levels of oxidative stress. The levels of endogenous stress were estimated by the amounts of reactive oxygen species, DNA damage markers (8-hydroxy-2'-deoxyguanosine, gamma-H2A histone family member X), pro- and antioxidant proteins (NADPH oxidase 4, superoxide dismutase 1, nuclear factor erythroid 2-related factor 2), and proteins that regulate apoptosis and autophagy (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein, light chain 3). SatIII (1) copy numbers were measured using the nonradioactive quantitative hybridization technique. For comparison, the contents of telomeric and ribosomal RNA gene repeats were determined. RNASATIII (1 and 9) were quantified using quantitative Polymerase Chain Reaction (PCR). RESULTS: Increased SatIII (1) contents in DNA from confluent HSFs were positively correlated with increased oxidative stress. Confluent cell cultivation without medium replacement and heat shock induced a decrease of SatIII (1) in DNA in parallel with a decrease in RNASATIII (1) and an increase in RNASATIII (9). CONCLUSIONS: During HSF cultivation, cells with increased SatIII (1) content accumulated in the cell pool under conditions of exaggerated oxidative stress. This fraction of cells decreased after the additional impact of exogenous stress. The process seems to be oscillatory.


Assuntos
Variações do Número de Cópias de DNA , Esquizofrenia , Humanos , 8-Hidroxi-2'-Desoxiguanosina , Antioxidantes , Fibroblastos , Esquizofrenia/genética
2.
ACS Biomater Sci Eng ; 9(3): 1391-1401, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36821424

RESUMO

Fullerenes and metallofullerenes play an active role in homeostasis of reactive oxygen species and may cause oxidative damage to cells. As pristine fullerenes are a basis for derivatization, studying oxidative DNA damage/repair and apoptosis is important in terms of genotoxicity and cytotoxicity for their biomedical application. Aqueous dispersions of C60, C70, and Gd@C82 (5 nM and 1.5 µM) were cultured with human fetal lung fibroblasts for 1, 3, 24, and 72 h. Oxidative DNA damage/repair was assessed through concentration of 8-oxodG, double-strand breaks, and activation of BRCA1. Activity of apoptosis was assessed through the BCL2/BAX ratio. All three fullerenes caused oxidative modification of DNA at the early stages; C60 caused the most long-term damage, Gd@C82 caused the most short-term damage, and C70 caused "wave-like" dynamics. The dynamics of DNA repair correlated with the dynamics of oxidative damage, but Gd@C82 caused more prolonged activation of the repair system than C60 or C70. The oxidative toxicity of Gd@C82, is minor and the oxidative toxicity of C60 is mild and short-term, in contrast to C70. In relation to the studied effects, the fullerenes can be arranged in a safety row of Gd@C82 > C60 > C70.


Assuntos
Fulerenos , Humanos , Fulerenos/farmacologia , Estresse Oxidativo , Pulmão , Reparo do DNA , Apoptose , Fibroblastos
3.
Genes (Basel) ; 13(12)2022 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-36553550

RESUMO

Oxidized in vitro genomic DNA (gDNA) is known to launch an adaptive response in human cell cultures. The cfDNA extracted from the plasma of schizophrenic patients (sz-cfDNA) and healthy controls (hc-cfDNA) contains increased amounts of 8-oxodG, a DNA-oxidation marker. The aim of the research was answering a question: can the human cfDNA isolated from blood plasma stimulate the adaptive response in human cells? In vitro responses of ten human skin fibroblasts (HSFs) and four peripheral blood mononuclear cell (PBMC) lines after 1-24 h of incubation with sz-cfDNA, gDNA and hc-cfDNA containing different amounts of 8-oxodG were examined. Expressions of RNA of eight genes (NOX4, NFE2L2, SOD1, HIF1A, BRCA1, BRCA2, BAX and BCL2), six proteins (NOX4, NRF2, SOD1, HIF1A, γH2AX and BRCA1) and DNA-oxidation marker 8-oxodG were analyzed by RT-qPCR and flow cytometry (when analyzing the data, a subpopulation of lymphocytes (PBL) was identified). Adding hc-cfDNA or sz-cfDNA to HSFs or PBMC media in equal amounts (50 ng/mL, 1-3 h) stimulated transient synthesis of free radicals (ROS), which correlated with an increase in the expressions of NOX4 and SOD1 genes and with an increase in the levels of the markers of DNA damage γH2AX and 8-oxodG. ROS and DNA damage induced an antioxidant response (expression of NFE2L2 and HIF1A), DNA damage response (BRCA1 and BRCA2 gene expression) and anti-apoptotic response (changes in BAX and BCL2 genes expression). Heterogeneity of cells of the same HSFs or PBL population was found with respect to the type of response to (sz,hc)-cfDNA. Most cells responded to oxidative stress with an increase in the amount of NRF2 and BRCA1 proteins along with a moderate increase in the amount of NOX4 protein and a low amount of 8-oxodG oxidation marker. However, upon the exposure to (sz,hc)-cfDNA, the size of the subpopulation with apoptosis signs (high DNA damage degree, high NOX4 and low NRF2 and BRCA1 levels) also increased. No significant difference between the responses to sz-cfDNA and hc-cfDNA was observed. Sz-cfDNA and hc-cfDNA showed similarly high bioactivity towards fibroblasts and lymphocytes. Conclusion: In cultured human cells, hc-cfDNA and sz-cfDNA equally stimulated an adaptive response aimed at launching the antioxidant, repair, and anti-apoptotic processes. The mediator of the development of the adaptive response are ROS produced by, among others, NOX4 and SOD1 enzymes.


Assuntos
Ácidos Nucleicos Livres , Esquizofrenia , Humanos , Leucócitos Mononucleares/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Superóxido Dismutase-1 , Proteína X Associada a bcl-2 , DNA , Esquizofrenia/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Plasma/metabolismo
4.
PLoS One ; 17(6): e0269130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696356

RESUMO

INTRODUCTION: Increased systemic oxidative stress is common in schizophrenia (SZ) patients. NADPH-oxidase 4 (NOX4) is the cell oxidoreductase, catalyzing the hydrogen peroxide formation. Presumably, NOX4 is the main oxidative stress factor in a number of diseases such as cardiovascular diseases and cancer. We hypothesized that NOX4 may be involved in the oxidative stress development caused by the disease in the schizophrenic patients' peripheral blood lymphocytes (PBL). MATERIALS AND METHODS: The SZ group included 100 patients (68 men and 32 women aged 28 ± 11 years). The control group included 60 volunteers (35 men and 25 women aged 25 ± 12 years). Flow cytometry analysis (FCA) was used for DNA damage markers (8-oxodG, É£H2AX), pro- and antiapoptotic proteins (BAX1 and BCL2) and the master-regulator of anti-oxidant response NRF2 detection in the lymphocytes of the untreated SZ patients (N = 100) and the healthy control (HC, N = 60). FCA and RT-qPCR were used for NOX4 and RNANOX4 detection in the lymphocytes. RT-qPCR was used for mtDNA quantitation in peripheral blood mononuclear cells. Cell-free DNA concentration was determined in blood plasma fluorimetrically. RESULTS: 8-oxodG, NOX4, and BCL2 levels in the PBL in the SZ group were higher than those in the HC group (p < 0.001). É£H2AX protein level was increased in the subgroup with high 8-oxodG (p<0.02) levels and decreased in the subgroup with low 8-oxodG (p <0.0001) levels. A positive correlation was found between 8-oxodG, É£H2AX and BAX1 levels in the SZ group (p <10-6). NOX4 level in lymphocytes did not depend on the DNA damage markers values and BAX1 and BCL2 proteins levels. In 15% of PBL of the HC group a small cellular subfraction was found (5-12% of the total lymphocyte pool) with high DNA damage level and elevated BAX1 protein level. The number of such cells was maximal in PBL samples with low NOX4 protein levels. CONCLUSION: Significant NOX4 gene expression was found a in SZ patients' lymphocytes, but the corresponding protein is probably not a cause of the DNA damage.


Assuntos
NADPH Oxidase 4/metabolismo , Esquizofrenia , 8-Hidroxi-2'-Desoxiguanosina , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Masculino , NADP/metabolismo , NADPH Oxidase 4/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
5.
Genes (Basel) ; 12(10)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34680920

RESUMO

The pericentric satellite III (SatIII or Sat3) and II tandem repeats recently appeared to be transcribed under stress conditions, and the transcripts were shown to play an essential role in the universal stress response. In this paper, we review the role of human-specific SatIII copy number variation (CNV) in normal stress response, aging and pathology, with a focus on 1q12 loci. We postulate a close link between transcription of SatII/III repeats and their CNV. The accrued body of data suggests a hypothetical universal mechanism, which provides for SatIII copy gain during the stress response, alongside with another, more hypothetical reverse mechanism that might reduce the mean SatIII copy number, likely via the selection of cells with excessively large 1q12 loci. Both mechanisms, working alternatively like swings of the pendulum, may ensure the balance of SatIII copy numbers and optimum stress resistance. This model is verified on the most recent data on SatIII CNV in pathology and therapy, aging, senescence and response to genotoxic stress in vitro.


Assuntos
Envelhecimento/genética , Variações do Número de Cópias de DNA , DNA Satélite/genética , Neoplasias/genética , Humanos , Estresse Fisiológico
6.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502190

RESUMO

Inductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C60 fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs). Uptake of the phosphonate C60 fullerene derivatives in human MSCs, intracellular ROS visualization, superoxide scavenging potential, and the expression of myogenic, adipogenic, and osteogenic differentiation genes were studied. The prolonged MSC incubation (within 7-14 days) with the C60 pentaphoshonate potassium salt promoted their differentiation towards the myogenic lineage. The transcription factors and gene expressions determining myogenic differentiation (MYOD1, MYOG, MYF5, and MRF4) increased, while the expression of osteogenic differentiation factors (BMP2, BMP4, RUNX2, SPP1, and OCN) and adipogenic differentiation factors (CEBPB, LPL, and AP2 (FABP4)) was reduced or did not change. The stimulation of autophagy may be one of the factors contributing to the increased expression of myogenic differentiation genes in MSCs. Autophagy may be caused by intracellular alkalosis and/or short-term intracellular oxidative stress.


Assuntos
Fulerenos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Desenvolvimento Muscular , Autofagia , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Proteína MyoD/genética , Fator Regulador Miogênico 5/genética , Miogenina/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008689

RESUMO

The concept of hormesis describes a phenomenon of adaptive response to low-dose ionizing radiation (LDIR). Similarly, the concept of mitohormesis states that the adaptive program in mitochondria is activated in response to minor stress effects. The mechanisms of hormesis effects are not clear, but it is assumed that they can be mediated by reactive oxygen species. Here, we studied effects of LDIR on mitochondria in mesenchymal stem cells. We have found that X-ray radiation at a dose of 10 cGy as well as oxidized fragments of cell-free DNA (cfDNA) at a concentration of 50 ng/mL resulted in an increased expression of a large number of genes regulating the function of the mitochondrial respiratory chain complexes in human mesenchymal stem cells (MSC). Several genes remained upregulated within hours after the exposure. Both X-ray radiation and oxidized cfDNA resulted in upregulation of FIS1 and MFN1 genes, which regulated fusion and fission of mitochondria, within 3-24 h after the exposure. Three hours after the exposure, the number of copies of mitochondrial DNA in cells had increased. These findings support the hypothesis that assumes oxidized cell-free DNA as a mediator of MSC response to low doses of radiation.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Mitocôndrias/genética , Mitocôndrias/efeitos da radiação , Radiação Ionizante , Ácidos Nucleicos Livres/metabolismo , DNA Mitocondrial/genética , Relação Dose-Resposta à Radiação , Transporte de Elétrons , Dosagem de Genes , Genes Mitocondriais , Humanos , Potencial da Membrana Mitocondrial , Dinâmica Mitocondrial , Oxirredução/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Raios X
8.
Chem Commun (Camb) ; 56(70): 10203-10206, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32748905

RESUMO

Here we report a straightforward method for the synthesis of a water-soluble C60 fullerene derivative decorated with five residues of phosphonic acid. Self-assembly of the synthesized compound in aqueous solution leads to the formation of nanostructures with unprecedented myogenic and antiviral activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Fulerenos/química , Fulerenos/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Nanoestruturas/química , Água/química , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Solubilidade
9.
Oxid Med Cell Longev ; 2019: 7853492, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781350

RESUMO

BACKGROUND: Oxidized human DNA or plasmid DNAs containing human ribosomal genes can easily penetrate into the breast cancer cells MCF7 and stimulate the adaptive response induction. Plasmid DNA containing a CMV promoter, gene EGFP, and the insertion of the human ribosomal genes can be expressed. A hypothesis is proposed: these features of the ribosomal DNA are due to the presence of dGn motifs that are prone to oxidize. METHODS: Cells of MCF7 line were cultured with plasmids which contained a CMV promoter and gene of fluorescent protein EGFP. Genetic construction pEGFP-Gn contains pEGFP vector and a small insertion with dG11 and dG13 motifs that are inclined to oxidation. The accumulation of pEGFP and pEGFP-Gn in MCF7 (qPCR), the levels of ROS in the cells, the content of 8-oxodG in plasmids and cellular DNA (flow cytometry, immunoassay, and fluorescent microscopy), the expression of NOX4 and EGFP, the localization of NOX4 and EGFP in MCF7 (qPCR, flow cytometry, and fluorescent microscopy), and the levels of the cell DNA damage (comet assay) were analyzed. RESULTS: (dG)n insertions in the plasmid pEGFP increase the levels of ROS, the cell DNA oxidation and DNA damage, and the level of transfection of plasmid into the MCF7 cells. NOX4 participates in the oxidation of pEGFP-Gn and pEGFP. The expression of EGFP gene in MCF7 is significantly increased in case of pEGFP-Gn. Stimulation of ROS synthesis (H2O2 40 µM or 10 cGy IR) increases the level of expression of EGFP. CONCLUSIONS: GC-rich DNA fragments containing dGn motifs that are inclined to oxidation penetrate into MCF7 cancer cells, stimulate the adaptive response, and can be expressed. This property of GC-rich cell-free DNA should be considered and/or could potentially be used in therapy of tumors.


Assuntos
Neoplasias da Mama/metabolismo , DNA Ribossômico , Motivos de Nucleotídeos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Dano ao DNA , DNA Ribossômico/farmacocinética , DNA Ribossômico/farmacologia , Feminino , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Células MCF-7 , NADPH Oxidase 4/biossíntese , NADPH Oxidase 4/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Genomics ; 2019: 9467029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531341

RESUMO

In pathology or under damaging conditions, the properties of cell-free DNA (cfDNA) change. An example of such change is GC enrichment, which drastically alters the biological properties of cfDNA. GC-rich cfDNA is a factor of stress signaling, whereas genomic cfDNA is biologically inactive. GC-rich cfDNA stimulates TLR9-MyD88-NF-κB signaling cascade, leading to an increase in proinflammatory cytokine levels in the organism. In addition, GC-rich DNA is prone to oxidation and oxidized cfDNA can stimulate secondary oxidative stress. This article is a review of works dedicated to the investigation of a low-dose ionizing radiation effect, a bystander effect, and the role of cfDNA in both of these processes.

11.
Front Oncol ; 9: 445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205871

RESUMO

Introduction: The cell free ribosomal DNA (cf-rDNA) is accrued in the total pool of cell free DNA (cfDNA) in some non-cancer diseases and demonstrates DAMPs characteristics. The major research questions: (1) How does cell free rDNA content change in breast cancer; (2) What type of response in the MCF7 breast cancer cells is caused by cf-rDNA; and (3) What type of DNA sensors (TLR9 or AIM2) is stimulated in MCF7 in response to the action of cf-rDNA? Materials and Methods: CfDNA and gDNA were isolated from the blood plasma and the cells derived from 38 breast cancer patients and 20 healthy female controls. The rDNA content in DNA was determined using non-radioactive quantitative hybridization. In order to explore the rDNA influence on MCF7 breast cancer cells, the model constructs (GC-DNAs) were applied: pBR322-rDNA plasmid (rDNA inset 5836 bp long) and pBR322 vector. ROS generation, DNA damage, cell cycle, expression of TLR9, AIM2, NF-kB, STAT3, and RNA for 44 genes affecting the cancer cell viability were evaluated. The methods used: RT-qPCR, fluorescent microscopy, immunoassay, flow cytometry, and siRNA technology. Results: The ratio R = cf-rDNA/g-rDNA for the cases was higher than for the controls (median 3.4 vs. 0.8, p < 10-8). In MCF7, GC-DNAs induce a ROS burst, DNA damage response, and augmentation of NF-kB and STAT3 activity. The number of the apoptotic cells decreases, while the number of cells with an instable genome (G2/M- arrest, micronuclei) increase. Expression of anti-apoptotic genes (BCL2, BCL2A1, BCL2L1, BIRC3, MDM2) is elevated, while expression of pro-apoptotic genes (BAX, BID, BAD, PMAIP1, BBC3) is lowered. The cells response for pBR322-rDNA is much more intense and develops much faster, than response for pBR322, and is realized through activation of TLR9- MyD88 - NF-kB- signaling. This difference in response speed is owing to the heightened oxidability of pBR322-rDNA and better ability to penetrate the cell. Induction of TLR9 expression in MCF7 is followed by blocking AIM2 expression. Conclusion: (1) Ribosomal DNA accumulates in cfDNA of breast cancer patients; (2) Cell free rDNA induce DNA damage response and stimulates cells survival, including cells with an instable genome; (3) Cell free rDNA triggers TLR9- MyD88- NF-kB- signaling, with significantly repressing the expression of AIM2.

12.
Oxid Med Cell Longev ; 2019: 2348165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867888

RESUMO

OBJECTIVE: Easily oxidizable GC-rich DNA (GC-DNA) fragments accumulate in the cell-free DNA (cfDNA) of patients with various diseases. The human oxidized DNA penetrates the MCF7 breast cancer cells and significantly changes their physiology. It can be assumed that readily oxidizable GC-DNA fragments can penetrate the cancer cells and be expressed. METHODS: MCF7 cells were cultured in the presence of two types of GC-DNA probes: (1) vectors pBR322 and pEGFP and (2) plasmids carrying inserted human rDNA (pBR322-rDNA and pEGFP-rDNA). pEGFP and pEGFP-rDNA contained a CMV promoter and a fluorescent protein gene EGFP. ROS generation rate, accumulation of the DNA probes in MCF7, 8-oxodG content, expression of EGFP and NOX4, and localization of EGFP, NOX4, and 8-oxodG in MCF7 were explored. The applied methods were qPCR, fluorescent microscopy (FM), immunoassay, and flow cytometry (FCA). RESULTS: When GC-DNA is added to the cell culture medium, it interacts with the cell surface. At the site of GC-DNA contact with the cell, NOX4 is expressed, and ROS level increases. The ROS oxidize the GC-DNA. When using the plasmids pEGFP and pEGFP-rDNA, an increase in the amount of the DNA EGFP, RNA EGFP, and EGFP proteins was detected in the cells. These facts suggest that GC-DNA penetrates the cells and the EGFP gene is expressed. Insertions of the rDNA significantly increase the GC-DNA oxidation degree as well as the rate of plasmid transfection into the cells and the EGFP expression level. In the nucleus, the oxidized GC-rDNA fragments, but not the vectors, are localized within the nucleolus. CONCLUSIONS: GC-rich cfDNA fragments that are prone to oxidation can easily penetrate the cancer cells and be expressed. The cfDNA should become a target for the antitumor therapy.


Assuntos
Neoplasias da Mama/genética , DNA/genética , Vetores Genéticos/genética , Células MCF-7/metabolismo , Neoplasias da Mama/patologia , Humanos , Transfecção
13.
Oxid Med Cell Longev ; 2018: 1052413, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743966

RESUMO

Cell-free DNA (cfDNA) is a circulating DNA of nuclear and mitochondrial origin mainly derived from dying cells. Recent studies have shown that cfDNA is a stress signaling DAMP (damage-associated molecular pattern) molecule. We report here that the expression profiles of cfDNA-induced factors NRF2 and NF-κB are distinct depending on the target cell's type and the GC-content and oxidation rate of the cfDNA. Stem cells (MSC) have shown higher expression of NRF2 without inflammation in response to cfDNA. In contrast, inflammatory response launched by NF-κB was dominant in differentiated cells HUVEC, MCF7, and fibroblasts, with a possibility of transition to massive apoptosis. In each cell type examined, the response for oxidized cfDNA was more acute with higher peak intensity and faster resolution than that for nonoxidized cfDNA. GC-rich nonoxidized cfDNA evoked a weaker and prolonged response with proinflammatory component (NF-κB) as predominant. The exploration of apoptosis rates after adding cfDNA showed that cfDNA with moderately increased GC-content and lightly oxidized DNA promoted cell survival in a hormetic manner. Novel potential therapeutic approaches are proposed, which depend on the current cfDNA content: either preconditioning with low doses of cfDNA before a planned adverse impact or eliminating (binding, etc.) cfDNA when its content has already become high.


Assuntos
Tecido Adiposo/metabolismo , Alarminas/metabolismo , Mama/patologia , Ácidos Nucleicos Livres/metabolismo , Fibroblastos/metabolismo , Células-Tronco/metabolismo , Cordão Umbilical/patologia , Tecido Adiposo/patologia , Apoptose , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células MCF-7 , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Células-Tronco/patologia
14.
PLoS One ; 13(1): e0189826, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29329300

RESUMO

BACKGROUND: Hypermethylation is observed in the promoter regions of suppressor genes in the tumor cancer cells. Reactivation of these genes by demethylation of their promoters is a prospective strategy of the anticancer therapy. Previous experiments have shown that symmetric dimeric bisbenzimidazoles DBP(n) are able to block DNA methyltransferase activities. It was also found that DBP(n) produces a moderate effect on the activation of total gene expression in HeLa-TI population containing epigenetically repressed avian sarcoma genome. PRINCIPAL FINDINGS: It is shown that DBP(n) are able to penetrate the cellular membranes and accumulate in breast carcinoma cell MCF-7, mainly in the mitochondria and in the nucleus, excluding the nucleolus. The DBP(n) are non-toxic to the cells and have a weak overall demethylation effect on genomic DNA. DBP(n) demethylate the promoter regions of the tumor suppressor genes PTEN and RARB. DBP(n) promotes expression of the genes RARB, PTEN, CDKN2A, RUNX3, Apaf-1 and APC "silent" in the MCF-7 because of the hypermethylation of their promoter regions. Simultaneously with the demethylation of the DNA in the nucleus a significant increase in the methylation level of rRNA genes in the nucleolus was detected. Increased rDNA methylation correlated with a reduction of the rRNA amount in the cells by 20-30%. It is assumed that during DNA methyltransferase activity inhibition by the DBP(n) in the nucleus, the enzyme is sequestered in the nucleolus and provides additional methylation of the rDNA that are not shielded by DBP(n). CONCLUSIONS/SIGNIFICANCE: It is concluded that DBP (n) are able to accumulate in the nucleus (excluding the nucleolus area) and in the mitochondria of cancer cells, reducing mitochondrial potential. The DBP (n) induce the demethylation of a cancer cell's genome, including the demethylation of the promoters of tumor suppressor genes. DBP (n) significantly increase the methylation of ribosomal RNA genes in the nucleoli. Therefore the further study of these compounds is needed; it could lead to the creation of new anticancer agents.


Assuntos
Benzimidazóis/farmacologia , Metilação de DNA/efeitos dos fármacos , RNA Ribossômico/genética , Receptores do Ácido Retinoico/genética , Benzimidazóis/química , Dimerização , Células HeLa , Humanos , Células MCF-7 , PTEN Fosfo-Hidrolase , Espécies Reativas de Oxigênio/metabolismo
15.
Adv Exp Med Biol ; 924: 109-112, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27753029

RESUMO

It has been established that cell-free DNA circulating in the bloodstream affects cells. The characteristics of cfDNA depend on the physiological state of the organism. As we showed previously, diseases can cause either GC-enrichment of the cell-free DNA pool or its oxidation. Thus, in cases of cerebral atherosclerosis, heart attack and rheumatic arthritis the cell-free DNA pool is GC-enriched and, in the case of cancer, both GC-enriched and oxidized. Herein we investigated the time-dependent effect of oxidized and GC-rich cell-free DNA on NF-kB and NRF2 signaling pathways in human mesenchymal stem cells and showed that they affect cells in different ways. Oxidized DNA drastically increases expression of NRF2 in a short period of time, but the effect does not last long. GC-rich DNA causes a prolonged increase in mRNA levels of NF-kB and NRF2 which lasts 48 and 24 h, respectively.


Assuntos
DNA/genética , Sequência Rica em GC , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Transdução de Sinais/genética , Células Cultivadas , DNA/metabolismo , Expressão Gênica , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
16.
PLoS One ; 8(10): e77469, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147001

RESUMO

BACKGROUND: Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases and acts upon the cells. Response to cfDNA depends on concentrations and levels of the damage within cfDNA. Oxidized extracellular DNA acts as a stress signal and elicits an adaptive response. PRINCIPAL FINDINGS: Here we show that oxidized extracellular DNA stimulates the survival of MCF-7 tumor cells. Importantly, in cells exposed to oxidized DNA, the suppression of cell death is accompanied by an increase in the markers of genome instability. Short-term exposure to oxidized DNA results in both single- and double strand DNA breaks. Longer treatments evoke a compensatory response that leads to a decrease in the levels of chromatin fragmentations across cell populations. Exposure to oxidized DNA leads to a decrease in the activity of NRF2 and an increase in the activity of NF-kB and STAT3. A model that describes the role of oxidized DNA released from apoptotic cells in tumor biology is proposed. CONCLUSIONS/SIGNIFICANCE: Survival of cells with an unstable genome may substantially augment progression of malignancy. Further studies of the effects of extracellular DNA on malignant and normal cells are warranted.


Assuntos
Dano ao DNA , DNA Circular/metabolismo , Instabilidade Genômica , Neoplasias/genética , Transporte Biológico , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Quebras de DNA , Proteínas de Ligação a DNA , Humanos , Espaço Intracelular/metabolismo , Células MCF-7 , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
17.
Mutat Res ; 747-748: 6-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23644378

RESUMO

Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA(OX). The levels of cfDNA(OX) are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by Н2О2in vitro (gDNA(OX)) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA(OX) on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA(OX) evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA(OX) leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of РСNА, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA(OX) and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA(OX) inhibits NF-κB signaling. gDNA(OX) is a model for oxidized cfDNA(OX) that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA released from irradiated cells may be responsible for an abscopal effects and a bystander mediated adaptive response seen in some cancer patients. These results indicate the necessity for the further study of the effects of oxidized DNA in both in vitro and in vivo systems.


Assuntos
Dano ao DNA , DNA/farmacologia , Fibroblastos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , 8-Hidroxi-2'-Desoxiguanosina , Adaptação Fisiológica , Animais , Bovinos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/efeitos da radiação , Cromatina/efeitos dos fármacos , Cromatina/ultraestrutura , Meios de Cultivo Condicionados/farmacologia , Meios de Cultura Livres de Soro , Citocinas/biossíntese , Citocinas/genética , Metilação de DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Humanos , Antígeno Ki-67/biossíntese , Antígeno Ki-67/genética , Pulmão/citologia , Pulmão/embriologia , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Oxirredução , Antígeno Nuclear de Célula em Proliferação/biossíntese , Antígeno Nuclear de Célula em Proliferação/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Espécies Reativas de Oxigênio , Pele/citologia , Receptor Toll-Like 9/biossíntese , Receptor Toll-Like 9/genética
18.
Mutat Res ; 729(1-2): 52-60, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22001237

RESUMO

The development of the bystander effect induced by low doses of irradiation in human umbilical vein endothelial cells (HUVECs) depends on extracellular DNA (ecDNA) signaling pathway. We found that the changes in the levels of ROS and NO production by human endothelial cells are components of the radiation induced bystander effect that can be registered at a low dose. We exposed HUVECs to X-ray radiation and studied effects of ecDNA(R) isolated from the culture media conditioned by the short-term incubation of irradiated cells on intact HUVECs. Effects of ecDNA(R) produced by irradiated cells on ROS and NO production in non-irradiated HUVECs are similar to bystander effect. These effects at least partially depend on TLR9 signaling. We compared the production of the nitric oxide and the ROS in human endothelial cells that were (1) irradiated at a low dose; (2) exposed to the ecDNA(R) extracted from the media conditioned by irradiated cells; and (3) exposed to human DNA oxidized in vitro. We found that the cellular responses to all three stimuli described above are essentially similar. We conclude that irradiation-related oxidation of the ecDNA is an important component of the ecDNA-mediated bystander effect.


Assuntos
Efeito Espectador/efeitos da radiação , DNA/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Células Cultivadas , DNA/metabolismo , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica , Humanos , Óxido Nítrico/efeitos da radiação , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/efeitos da radiação , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Transdução de Sinais , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/efeitos da radiação , Raios X
19.
Mutat Res ; 669(1-2): 155-61, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19540246

RESUMO

X-radiation (10cGy) was shown to induce in human lymphocytes transposition of homologous chromosomes loci from the membrane towards the centre of the nucleus and activation of the chromosomal nucleolus-forming regions (NFRs). These effects are transmitted by means of extracellular DNA (ecDNA) fragments to nonirradiated cells (the so-called bystander effect, BE). We demonstrated that in the development of the BE an important role is played by oxidative stress (which is brought about by low radiation doses and ecDNA fragments of the culture medium of the irradiated cells), by an enzyme of apoptosis called caspase-3, and by DNA-binding receptors of the bystander cells, presumably TLR9. Proposed herein is a scheme of the development of an adaptive response and the BE on exposure to radiation. Ionizing radiation induces apoptosis of the radiosensitive fraction of cells due to the development of the "primary" oxidative stress (OS). DNA fragments of apoptotic cells are released into the intercellular space and interact with the DNA-binding receptors of the bystander cells. This interaction activates in lymphocytes signalling pathways associated with synthesis of the reactive oxygen species and nitrogen species, i.e., induces secondary oxidative stress accompanied by apoptosis of part of the cells, etc. Hence, single exposure to radiation may be followed by relatively long-lasting in the cellular population oxidative stress contributing to the development of an adaptive response. We thus believe that ecDNA of irradiated apoptotic lymphocytes is a significant factor of stress-signalling.


Assuntos
Apoptose/efeitos da radiação , Efeito Espectador/efeitos da radiação , DNA/metabolismo , Linfócitos/efeitos da radiação , Estresse Oxidativo , Caspase 3/metabolismo , Células Cultivadas , DNA/genética , DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Peróxido de Hidrogênio/farmacologia , Hibridização in Situ Fluorescente , Oxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Toll-Like 9/metabolismo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA