Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 29(16): 2229-2235, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31248772

RESUMO

Prostate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy. Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer cells while low level of expression is observed in normal cells. In this study we describe the development of Glu-urea-Lys based PSMA-targeting conjugates with paclitaxel. A series of new PSMA targeting conjugates with paclitaxel was designed and synthesized. The cytotoxicity of conjugates was evaluated against prostate (LNCaP, 22Rv1 and PC-3) and non-prostate (Hek293T, VA13, A549 and MCF-7) cell lines. The most promising conjugate 21 was examined in vivo using 22Rv1 xenograft mice model. It demonstrated good efficiency comparable with paclitaxel, while reduced toxicity. 3D molecular docking study was also performed to understand underlying mechanism of binding and further optimization of the linker substructure and conjugates structure for improving the target affinity. These conjugates may be useful for further design of novel PSMA targeting delivery systems for PC.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Paclitaxel/síntese química , Neoplasias da Próstata/tratamento farmacológico , Animais , Humanos , Masculino , Camundongos
2.
Bioorg Med Chem Lett ; 29(10): 1246-1255, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30904185

RESUMO

Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), has recently emerged as a prominent biomarker of prostate cancer (PC) and as an attractive protein trap for drug targeting. At the present time, several drugs and molecular diagnostic tools conjugated with selective PSMA ligands are actively evaluated in different preclinical and clinical trials. In the current work, we discuss design, synthesis and a preliminary biological evaluation of PSMA-specific small-molecule carrier equipped by Doxorubicin (Dox). We have introduced an unstable azo-linker between Dox and the carrier hence the designed compound does release the active substance inside cancer cells thereby providing a relatively high Dox concentration in nuclei and a relevant cytotoxic effect. In contrast, we have also synthesized a similar conjugate with a stable amide linker and it did not release the drug at all. This compound was predominantly accumulated in cytoplasm and did not cause cell death. Preliminary in vivo evaluation has showed good efficiency for the degradable conjugate against PC3-PIP(PSMA+)-containing xenograft mine. Thus, we have demonstrated that the conjugate can be used as a template to design novel analogues with improved targeting, anticancer activity and lower rate of potential side effects. 3D molecular docking study has also been performed to elucidate the underlying mechanism of binding and to further optimization of the linker area for improving the target affinity.


Assuntos
Antígenos de Superfície/química , Antineoplásicos/síntese química , Doxorrubicina/química , Glutamato Carboxipeptidase II/química , Animais , Antígenos de Superfície/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neoplasias da Próstata/tratamento farmacológico , Estrutura Terciária de Proteína , Transplante Heterólogo
3.
Curr Drug Deliv ; 13(8): 1303-1312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27440073

RESUMO

During the past decade asialoglycoprotein receptor (ASGP-R) expressed predominantly by hepatocytes has attracted a considerable attention as a convenient biomolecular trap for targeted drug delivery. Currently, several selective galactose-containing ligands equipped by drug molecules, e.g. known anticancer therapeutics, as well as diagnostic tools are under active preclinical development. In this paper, we have carried out a rational in silico screening among the molecules available in ChemDiv collection and compounds provided by our colleagues to reveal potential ASGP-R binders. Thus, 3D molecular docking approach provided a set of 100 `high score` molecules that was subsequently evaluated in vitro using an advanced Surface Plasmon Resonance (SPR) technique. As a result, dozens of novel small-molecule ASGP-R ligands with high diversity in structure were identified. Several hits showed the binding affinity much more better than that determined for galactose and Nacetylgalactosamine which were used as reference compounds. The disclosed molecules can be reasonably regarded as promising molecular devices for targeted drug delivery to hepatocytes.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Receptor de Asialoglicoproteína/química , Simulação por Computador , Sistemas de Liberação de Medicamentos , Hepatócitos/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Ressonância de Plasmônio de Superfície
4.
J Drug Target ; 24(8): 679-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26887438

RESUMO

Prostate cancer (PC) is the prevalent malignancy widespread among men in the Western World. Prostate specific membrane antigen (PSMA) is an established PC marker and has been considered as a promising biological target for anti-PC drug delivery and diagnostics. The protein was found to be overexpressed in PC cells, including metastatic, and the neovasculature of solid tumors. These properties make PSMA-based approach quite appropriate for effective PC imaging and specific drug therapy. Through the past decade, a variety of PSMA-targeted agents has been systematically evaluated. Small-molecule compounds have several advantages over other classes, such as improved pharmacokinetics and rapid blood clearance. These low-weight ligands have similar structure and can be divided into three basic categories in accordance with the type of their zinc-binding core-head. Several PSMA binders are currently undergoing clinical trials generally for PC imaging. The main goal of the present review is to describe the recent progress achieved within the title field and structure activity relationships (SAR) disclosed for different PSMA ligands. Recent in vitro and in vivo studies for each type of the compounds described have also been briefly summarized.


Assuntos
Antígenos de Superfície/metabolismo , Portadores de Fármacos/química , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Portadores de Fármacos/farmacocinética , Humanos , Ligantes , Masculino , Estrutura Molecular , Terapia de Alvo Molecular , Neoplasias da Próstata/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacocinética , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 24(4): 802-11, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780833

RESUMO

A set of novel selenohydantoins were synthesized via a convenient and versatile approach involving the reaction of isoselenocyanates with various amines. We also revealed an unexpected Z→E isomerization of pyridin-2-yl-substituted selenohydantoins in the presence of Cu(2+) cations. The detailed mechanism of this transformation was suggested on the basis of quantum-chemical calculations, and the key role of Cu(2+) was elucidated. The obtained compounds were subsequently evaluated against a panel of different cancer cell lines. As a result, several molecules were identified as promising micromolar hits with good selectivity index. Instead of analogous thiohydantoins, which have been synthesized previously, selenohydantoins demonstrated a relatively high antioxidant activity comparable (or greater) to the reference molecule, Ebselen, a clinically approved drug candidate. The most active compounds have been selected for further biological trials.


Assuntos
Antineoplásicos/síntese química , Antioxidantes/síntese química , Hidantoínas/síntese química , Compostos Organosselênicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Azóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cianatos/química , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa Peroxidase/antagonistas & inibidores , Glutationa Peroxidase/química , Humanos , Hidantoínas/farmacologia , Concentração Inibidora 50 , Isoindóis , Compostos Organosselênicos/farmacologia , Piridinas/química , Teoria Quântica , Estereoisomerismo , Relação Estrutura-Atividade
6.
J Mol Biol ; 428(10 Pt B): 2134-45, 2016 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-26707202

RESUMO

N6-methyladenosine (m(6)A) is ubiquitously present in the RNA of living organisms from Escherichia coli to humans. Methyltransferases that catalyze adenosine methylation are drastically different in specificity from modification of single residues in bacterial ribosomal or transfer RNA to modification of thousands of residues spread among eukaryotic mRNA. Interactions that are formed by m(6)A residues range from RNA-RNA tertiary contacts to RNA-protein recognition. Consequences of the modification loss might vary from nearly negligible to complete reprogramming of regulatory pathways and lethality. In this review, we summarized current knowledge on enzymes that introduce m(6)A modification, ways to detect m(6)A presence in RNA and the functional role of this modification everywhere it is present, from bacteria to humans.


Assuntos
Adenosina/análogos & derivados , Adenosina/metabolismo , Escherichia coli/metabolismo , RNA/metabolismo , Humanos , Metilação , Metiltransferases/metabolismo
7.
J Invest Dermatol ; 120(6): 1100-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12787141

RESUMO

Angiogenesis requires endothelial cell survival and proliferation, which depend upon cytokine stimulation together with integrin-mediated cell adhesion to extracellular matrix; however, the question of which specific integrins are the best targets for suppressing neovascularization is controversial and unresolved. Therefore, we designed experiments to compare contributions of individual integrins from both the alphav and beta1 integrin subfamilies. With immobilized antibodies, we determined that adhesion through integrins alpha1beta1, alpha2beta1, alphavbeta3, and alphavbeta5 each individually supported dermal microvascular endothelial cell survival. Also, substratum coated with collagen I (which binds alpha1beta1 and alpha2beta1) and vitronectin (which binds alphavbeta3 and alphavbeta5) each supported survival. Importantly, substratum coated with combinations of collagen I and vitronectin were most effective at promoting survival, and survival on three-dimensional collagen I gels was strongly enhanced by vitronectin. Vascular endothelial growth factor activation of the p44/p42 mitogen-activated protein kinase pathway, which is required for angiogenesis, was supported by adhesion through either alpha1beta1, alpha2beta1, alphavbeta3, or alphavbeta5, and pharmacologic inhibition of this pathway blocked proliferation and suppressed survival. Therefore, these studies establish that the alpha1beta1, alpha2beta1, alphavbeta3, and alphavbeta5 integrins each support dermal microvascular endothelial cell viability, and that each collaborate with vascular endothelial growth factor to support robust activation of the mitogen-activated protein kinase pathway which mediates both proliferation and survival. Moreover, survival is supported most significantly by extracellular matrices, which engage all of these integrins in combination. Consistent with important complementary and overlapping functions, combined antagonism of these integrins provided superior inhibition of angiogenesis in skin, indicating that multiplicity of integrin involvement should be considered in designing strategies for controlling neovascularization.


Assuntos
Integrina alfaV/fisiologia , Integrina beta1/fisiologia , Neovascularização Fisiológica/fisiologia , Pele/irrigação sanguínea , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Colágeno Tipo I/fisiologia , Combinação de Medicamentos , Fatores de Crescimento Endotelial/fisiologia , Endotélio Vascular/fisiologia , Ativação Enzimática , Humanos , Integrina alfa1beta1/fisiologia , Integrina alfa2beta1/fisiologia , Integrina alfaVbeta3/fisiologia , Integrinas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Linfocinas/fisiologia , Microcirculação , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Vitronectina/fisiologia , Spodoptera , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Vitronectina/fisiologia
8.
Int J Cancer ; 102(5): 453-62, 2002 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-12432546

RESUMO

A high tumor interstitial fluid pressure (TIFP) is a pathologic characteristic distinguishing the stroma of carcinomas from normal interstitial loose connective tissues. The role of TGF-beta1 and -beta3 in generating a high TIFP was investigated in xenografted experimental anaplastic thyroid carcinoma (ATC) derived from the human ATC cell line KAT-4. A single intravenous injection of a soluble recombinant TGF-beta receptor type II-murine Fc:IgG(2A) chimeric protein that specifically inhibits TGF-beta1 and -beta3, significantly lowered TIFP in a time and concentration dependent manner but did not change total tissue water content in the tumors. Tumor growth rate was higher in tumors treated with the TGF-beta1 and -beta3 inhibitor compared to control tumors during the first 10 days after administration of the inhibitor. The apoptotic index of carcinoma cells, and expression of the cell cycle inhibitor p27(Kip1), were, however, increased in TGF-beta1 and -beta3 inhibitor-treated tumors. Prolonged treatment periods and administration of a second dose of the inhibitor decreased tumor growth rate. The TGF-beta1 and -beta3 inhibitor did not affect proliferation or expression of phosphorylated Smad2 protein in KAT-4 cells cultured in vitro. Our results indicate that members of the TGF-beta family are potential targets for novel anti-cancer treatment directed to the stroma. First by controlling TIFP and by that potentially the uptake of anticancer drugs into tumors and second by their suggested role in maintaining a supportive tumor stroma.


Assuntos
Carcinoma/metabolismo , Espaço Extracelular/fisiologia , Neoplasias da Glândula Tireoide/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Carcinoma/patologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Inibidor de Quinase Dependente de Ciclina p27 , Humanos , Camundongos , Transplante de Neoplasias , Pressão , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta , Proteínas Recombinantes de Fusão , Células Estromais/metabolismo , Neoplasias da Glândula Tireoide/patologia , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta3 , Transplante Heterólogo , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo
9.
Am J Pathol ; 160(1): 195-204, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11786413

RESUMO

Angiogenesis is a complex process, involving functional cooperativity between cytokines and endothelial cell (EC) surface integrins. In this study, we investigated the mechanisms through which the alpha(1)beta(1) and alpha(2)beta(1) integrins support angiogenesis driven by vascular endothelial growth factor (VEGF). Dermal microvascular EC attachment through either alpha(1)beta(1) or alpha(2)beta(1) supported robust VEGF activation of the Erk1/Erk2 (p44/42) mitogen-activated protein kinase signal transduction pathway that drives EC proliferation. Haptotactic EC migration toward collagen I was dependent on alpha(1)beta(1) and alpha(2)beta(1) as was VEGF-stimulated chemotaxis of ECs in a uniform collagen matrix. Consistent with the functions of alpha(1)beta(1) and alpha(2)beta(1) in supporting signal transduction and EC migration, antibody antagonism of either integrin resulted in potent inhibition of VEGF-driven angiogenesis in mouse skin. Moreover, combined antagonism of alpha(1)beta(1) and alpha(2)beta(1) substantially reduced tumor growth and angiogenesis of human squamous cell carcinoma xenografts. Collectively, these studies identify critical collaborative functions for the alpha(1)beta(1) and alpha(2)beta(1) integrins in supporting VEGF signal transduction, EC migration, and tumor angiogenesis.


Assuntos
Carcinoma de Células Escamosas/irrigação sanguínea , Fatores de Crescimento Endotelial/fisiologia , Endotélio Vascular/fisiologia , Integrinas/fisiologia , Linfocinas/fisiologia , Neovascularização Patológica/fisiopatologia , Transdução de Sinais/fisiologia , Animais , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Endotélio Vascular/citologia , Feminino , Humanos , Integrina alfa1beta1 , Camundongos , Camundongos Endogâmicos BALB C , Microcirculação , Transplante de Neoplasias , Neovascularização Fisiológica/fisiologia , Receptores de Colágeno , Pele/irrigação sanguínea , Transplante Heterólogo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA