Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(16): 24584-24598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448772

RESUMO

Thin-film nanocomposite (TFN) forward osmosis (FO) membranes have attracted significant attention due to their potential for solving global water scarcity problems. In this study, we investigate the impact of titanium oxide (TiO2) and titanium oxide/reduced graphene (TiO2/rGO) additions on the performance of TFN-FO membranes, specifically focusing on water flux and reverse salt diffusion. Membranes with varying concentrations of TiO2 and TiO2/rGO were fabricated as interfacial polymerizing M-phenylenediamine (MPD) and benzenetricarbonyl tricholoride (TMC) monomers with TiO2 and its reduced graphene composites (TiO2/rGO). The TMC solution was supplemented with TiO2 and its reduced graphene composites (TiO2/rGO) to enhance FO performance and reverse solute flux. All MPD/TMC polyamide membranes are characterized using various techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. The results demonstrate that incorporating TiO2/rGO into the membrane thin layer improves water flux and reduces reverse salt diffusion. In contrast to the TFC membrane (10.24 L m-2h-1 and 6.53 g/m2 h), higher water flux and higher reverse solute flux were detected in the case of TiO2and TiO2/rGO-merged TFC skin membranes (18.81 and 24.52 L m-2h-1 and 2.74 and 2.15 g/m2 h, respectively). The effects of TiO2 and TiO2/rGO stacking on the skin membrane and the performance of TiO2 and TiO2/rGO skin membranes have been thoroughly studied. Additionally, being investigated is the impact of draw solution concentration.


Assuntos
Grafite , Nanocompostos , Titânio , Água , Membranas Artificiais , Osmose , Cloreto de Sódio , Cloreto de Sódio na Dieta
2.
J Hazard Mater ; 401: 123813, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113742

RESUMO

In this paper, rice husk and waste aluminum cans were exploited as silicon and aluminum sources, respectively for the low-cost synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products. XRD confirmed that the synthesized geopolymer/zeolite products are geopolymer/zeolite A (has a crystallite size of 58.44 nm & abbreviated as G1) and geopolymer/faujasite (has a crystallite size of 25.58 and 20.26 nm & abbreviated as G2 and G3, respectively). Also, the synthesized zeolite products are sodium aluminum silicate hydrate (has a crystallite size of 27.65 and 41.85 nm & abbreviated as H1 and H2, respectively). Besides, the synthesized zeolite/zeolite product is sodium aluminum silicate hydrate/zeolite A (has a crystallite size of 66.01 nm and abbreviated as H3). Moreover, the synthesized products were characterized using other tools such as HR-TEM, FE-SEM, EDX, and FT-IR. The synthesized products were efficiently applied for removing Co(II), Cu(II), and Zn(II) ions from aqueous media and wastewater which was taken from Abuzaabal- Qalyubiyah-Egypt. The maximum uptake capacity of G3 sample toward Co(II), Cu(II), and Zn(II) ions is 134.24 ± 1.26, 126.26 ± 0.32, and 131.93 ± 0.87 mg/g, respectively. The uptake of the studied metal ions is spontaneous, chemical, exothermic, and fitted well with the Langmuir isotherm and pseudo-2nd-order kinetic model.


Assuntos
Oryza , Poluentes Químicos da Água , Zeolitas , Adsorção , Alumínio , Concentração de Íons de Hidrogênio , Íons , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA