Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Pharm X ; 7: 100248, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689600

RESUMO

Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.

2.
Adv Sci (Weinh) ; 11(22): e2400713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593402

RESUMO

Osteoarthritis (OA) is a chronic inflammatory disease characterized by cartilage destruction, synovitis, and osteophyte formation. Disease-modifying treatments for OA are currently lacking. Because inflammation mediated by an imbalance of M1/M2 macrophages in the synovial cavities contributes to OA progression, regulating the M1 to M2 polarization of macrophages can be a potential therapeutic strategy. Basing on the inherent immune mechanism and pathological environment of OA, an immunoglobulin G-conjugated bilirubin/JPH203 self-assembled nanoparticle (IgG/BRJ) is developed, and its therapeutic potential for OA is evaluated. After intra-articular administration, IgG conjugation facilitates the recognition and engulfment of nanoparticles by the M1 macrophages. The internalized nanoparticles disassemble in response to the increased oxidative stress, and the released bilirubin (BR) and JPH203 scavenge reactive oxygen species (ROS), inhibit the nuclear factor kappa-B pathway, and suppress the activated mammalian target of rapamycin pathway, result in the repolarization of macrophages and enhance M2/M1 ratios. Suppression of the inflammatory environment by IgG/BRJ promotes cartilage protection and repair in an OA rat model, thereby improving therapeutic outcomes. This strategy of opsonization involving M1 macrophages to engulf carrier-free BR/JPH203 nanoparticles to suppress inflammation for OA therapy holds great potential for OA intervention and treatment.


Assuntos
Bilirrubina , Modelos Animais de Doenças , Inflamação , Macrófagos , Nanopartículas , Osteoartrite , Animais , Osteoartrite/imunologia , Osteoartrite/tratamento farmacológico , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ratos , Inflamação/imunologia , Bilirrubina/farmacologia , Bilirrubina/metabolismo , Masculino , Ratos Sprague-Dawley
3.
Int J Pharm ; 655: 124016, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38503397

RESUMO

Triple negative breast cancer (TNBC) presents a formidable challenge due to its low sensitivity to many chemotherapeutic drugs and a relatively low overall survival rate in clinical practice. Photothermal therapy has recently garnered substantial interest in cancer treatment, owing to its swift therapeutic effectiveness and minimal impact on normal cells. Metal-polyphenol nanostructures have recently garnered significant attention as photothermal transduction agents due to their facile preparation and favorable photothermal properties. In this study, we employed a coordinated approach involving Fe3+ and apigenin, a polyphenol compound, to construct the nanostructure (nFeAPG), with the assistance of ß-CD and DSPE-PEG facilitating the formation of the complex nanostructure. In vitro research demonstrated that the formed nFeAPG could induce cell death by elevating intracellular oxidative stress, inhibiting antioxidative system, and promoting apoptosis and ferroptosis, and near infrared spectrum irradiation further strengthen the therapeutic outcome. In 4T1 tumor bearing mice, nFeAPG could effectively accumulate into tumor site and exhibit commendable control over tumor growth. Futher analysis demonstrated that nFeAPG ameliorated the suppressed immune microenvironment by augmenting the response of DC cells and T cells. This study underscores that nFeAPG encompasses a multifaceted capacity to combat TNBC, holding promise as a compelling therapeutic strategy for TNBC treatment.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Terapia Fototérmica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Apigenina , Ferro , Linhagem Celular Tumoral , Polifenóis , Microambiente Tumoral
4.
Biomater Sci ; 12(4): 821-836, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168805

RESUMO

Islet transplantation holds significant promise as a curative approach for type 1 diabetes (T1D). However, the transition of islet transplantation from the experimental phase to widespread clinical implementation has not occurred yet. One major hurdle in this field is the challenge of insufficient vascularization and subsequent early loss of transplanted islets, especially in non-intraportal transplantation sites. The establishment of a fully functional vascular system following transplantation is crucial for the survival and secretion function of islet grafts. This vascular network not only ensures the delivery of oxygen and nutrients, but also plays a critical role in insulin release and the timely removal of metabolic waste from the grafts. This review summarizes recent advances in effective strategies to improve graft revascularization and enhance islet survival. These advancements include the local release and regulation of angiogenic factors (e.g., vascular endothelial growth factor, VEGF), co-transplantation of vascular fragments, and pre-vascularization of the graft site. These innovative approaches pave the way for the development of effective islet transplantation therapies for individuals with T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 1/cirurgia , Materiais Biocompatíveis , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transplante das Ilhotas Pancreáticas/fisiologia , Neovascularização Fisiológica
5.
J Control Release ; 362: 468-478, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666304

RESUMO

Psoriasis is a multifactorial immuno-inflammatory skin disease, characterized by keratinocyte hyperproliferation and aberrant immune activation. Although the pathogenesis is complex, the interactions among inflammation, Th17-mediated immune activation, and keratinocyte hyperplasia are considered to play a crucial role in the occurrence and development of psoriasis. Therefore, pharmacological interventions on the "inflammation-Th17-keratinocyte" vicious cycle may be a potential strategy for psoriasis treatment. In this study, JPH203 (a specific inhibitor of LAT1, which engulfs leucine to activate mTOR signaling)-loaded, ultraviolet B (UVB) radiation-induced, keratinocyte-derived extracellular vesicles (J@EV) were prepared for psoriasis therapy. The EVs led to increased interleukin 1 receptor antagonist (IL-1RA) content due to UVB irradiation, therefore not only acting as a carrier for JPH203 but also functioning through inhibiting the IL-1-mediated inflammation cascade. J@EV effectively restrained the proliferation of inflamed keratinocytes via suppressing mTOR-signaling and NF-κB pathway in vitro. In an imiquimod-induced psoriatic model, J@EV significantly ameliorated the related symptoms as well as suppressed the over-activated immune reaction, evidenced by the decreased keratinocyte hyperplasia, Th17 expansion, and IL17 release. This study shows that J@EV exerts therapeutic efficacy for psoriasis by suppressing LAT1-mTOR involved keratinocyte hyperproliferation and Th17 expansion, as well as inhibiting IL-1-NF-κB mediated inflammation, representing a novel and promising strategy for psoriasis therapy.

6.
Colloids Surf B Biointerfaces ; 228: 113438, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421763

RESUMO

Cancer, a disease notorious for its difficult therapy regimen, has long puzzled researchers. Despite attempts to cure cancer using surgery, chemotherapy, radiotherapy, and immunotherapy, their effectiveness is limited. Recently, photothermal therapy (PTT), a rising strategy, has gained attention. PTT can increase the surrounding temperature of cancer tissues and cause damage to them. Fe is widely used in PTT nanostructures due to its strong chelating ability, good biocompatibility, and the potential to induce ferroptosis. In recent years, many nanostructures incorporating Fe3+ have been developed. In this article, we summarize PTT nanostructures containing Fe and introduce their synthesis and therapy strategy. However, PTT nanostructures containing Fe are still in their infancy, and more effort must be devoted to improving their effectiveness so that they can eventually be used in clinics.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Terapia Fototérmica , Nanoestruturas/química , Fototerapia , Neoplasias/tratamento farmacológico
7.
Adv Healthc Mater ; 12(24): e2300571, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236618

RESUMO

Acute liver failure (ALF) is a severe liver disease caused by many reasons. One of them is the overdosed acetaminophen (APAP), which is metabolized into N-acetyl-p-benzoquinone imine (NAPQI), an excessive toxic metabolite, by CYP2E1, resulting in excessive reactive oxygen species (ROS), exhausted glutathione (GSH), and thereafter hepatocyte necrosis. N-acetylcysteine is the Food and Drug Administration-approved drug for detoxification of APAP, but it has limited clinical application due to the short therapeutic time window and concentration-related adverse effects. In this study, a carrier-free and bilirubin dotted nanoparticle (B/BG@N) is developed, which is formed using bilirubin and 18ß-Glycyrrhetinic acid, and bovine serum albumin (BSA) is then adsorbed to mimic the in vivo behavior of the conjugated bilirubin for hitchhiking. The results demonstrate that B/BG@N can effectively reduce the production of NAPQI as well as exhibit antioxidant effects against intracellular oxidative stress via regulating the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signal axis and reducing the production of inflammatory factors. In vivo study shows that B/BG@N can effectively improve the clinical symptom of the mice model. This study suggests that B/BG@N own increases circulation half-life, improves accumulation in the liver, and dual detoxification, providing a promising strategy for clinical ALF treatment.


Assuntos
Acetaminofen , Falência Hepática Aguda , Animais , Camundongos , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Fígado/metabolismo , Falência Hepática Aguda/tratamento farmacológico , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Glutationa/metabolismo , Bilirrubina/metabolismo , Bilirrubina/farmacologia
8.
Int J Pharm ; 641: 123082, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244464

RESUMO

Oxaliplatin (OXA) resistance remains the major obstacle to the successful chemotherapy of colorectal cancer (CRC). As a self-protection mechanism, autophagy may contribute to tumor drug resistance, therefore autophagy suppression could be regarded as a possible treatment option in chemotherapy. Cancer cells, especially drug-resistant tumor cells, increase their demand for specific amino acids by expanding exogenous supply and up-regulating de novo synthesis, to meet the needs for excessive proliferation. Therefore, it is possible to inhibit cancer cell proliferation through pharmacologically blocking the entry of amino acid into cancer cells. SLC6A14 (ATB0,+) is an essential amino acid transporter, that is often abnormally up-regulated in most cancer cells. Herein, in this study, we designed oxaliplatin/berbamine-coloaded, ATB0,+-targeted nanoparticles ((O + B)@Trp-NPs) to therapeutically target SLC6A14 (ATB0,+) and inhibit cancer proliferation. The (O + B)@Trp-NPs utilize the surface-modified tryptophan to achieve SLC6A14-targeted delivery of Berbamine (BBM), a compound that is found in a number of plants used in traditional Chinese medicine, which could suppress autolysosome formation though impairing autophagosome-lysosome fusion. We verified the feasibility of this strategy to overcome the OXA resistance during colorectal cancer treatment. The (O + B)@Trp-NPs significantly inhibited the proliferation and decreased the drug resistance of resistant colorectal cancer cells. In vivo, (O + B)@Trp-NPs greatly suppressed the tumor growth in tumor-bearing mice, which is consistent with the in vitro data. This research offers a unique and promising chemotherapeutic treatment for colorectal cancer.


Assuntos
Neoplasias Colorretais , Nanopartículas , Animais , Camundongos , Oxaliplatina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Autofagia , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
9.
Eur J Pharm Biopharm ; 187: 130-140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105362

RESUMO

Islet transplantation refers to the transfusion of healthy islet cells into the diabetic recipients and reconstruction of their endogenous insulin secretion to achieve insulin independence. It is a minimally invasive surgery that holds renewed prospect as a therapeutic method for type 1 diabetes mellitus. However, poor oxygenation in the early post-transplantation period is considered as one of the major causes of islet loss and dysfunction. Due to the metabolism chacteristics, islets required a high supply of oxygen for cell survival while a hypoxia environment would lead to severe islet loss and graft failure. Emerging strategies have been proposed, including providing external oxygen and speeding up revascularization. From the perspective of formulation science, it is feasible and practical to protect transplanted islets by oxygen-release before revascularization as opposed to local hypoxia. In this study, we review the potential formulation strategies that could provide oxygen-release by either delivering external oxygen or triggering localized oxygen generation for transplanted islets.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Oxigênio , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Insulina/metabolismo , Hipóxia/metabolismo
10.
Invest New Drugs ; 40(6): 1216-1230, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070108

RESUMO

Estrogen receptor-α (ERα) promotes breast cancer, and ER-positive cancer accounts for ~ 80% of breast cancers. This subtype responds positively to hormone/endocrine therapies involving either inhibition of estrogen synthesis or blockade of estrogen action. Carbidopa, a drug used to potentiate the therapeutic efficacy of L-DOPA in Parkinson's disease, is an agonist for aryl hydrocarbon receptor (AhR). Pharmacotherapy in Parkinson's disease decreases the risk for cancers, including breast cancer. The effects of carbidopa on ER-positive breast cancer were evaluated in cell culture and in mouse xenografts. The assays included cell proliferation, apoptosis, cell migration/invasion, subcellular localization of AhR, proteasomal degradation, and tumor growth in xenografts. Carbidopa decreased proliferation and migration of ER-positive human breast cancer cells in vitro with no significant effect on ER-negative breast cancer cells. Treatment of ER-positive cells with carbidopa promoted nuclear localization of AhR and expression of AhR target genes; it also decreased cellular levels of ERα via proteasomal degradation in an AhR-dependent manner. In vivo, carbidopa suppressed the growth of ER-positive breast cancer cells in mouse xenografts; this was associated with increased apoptosis and decreased cell proliferation. Carbidopa has therapeutic potential for ER-positive breast cancer either as a single agent or in combination with other standard chemotherapies.


Assuntos
Neoplasias da Mama , Doença de Parkinson , Humanos , Camundongos , Animais , Feminino , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias da Mama/patologia , Receptores de Estrogênio/metabolismo , Carbidopa/farmacologia , Carbidopa/uso terapêutico , Estrogênios , Linhagem Celular Tumoral
11.
J Control Release ; 347: 237-255, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489544

RESUMO

Osteoarthritis (OA) is a chronic disease caused by joint inflammation. Its occurrence and development depend on a continuous inflammation environment. The activated M1 macrophages play a critical role in the inflammatory response of OA. Regulating the pro-inflammatory M1 to anti-inflammatory M2 macrophages in the OA articular cavity could be a rational strategy for OA treatment. It has been acknowledged that activated macrophages could proactively capture opsonized nanoparticles in the bloodstream and then accumulate into the reticuloendothelial system (RES) organs. Based on this fact, a trapping strategy is proposed, which transforms a normal nanoparticle into an opsonized attractant to target and regulate macrophage polarization. In this study, the opsonized nanoparticle (IgG/Bb@BRPL) had several key features, including an immunoglobulin IgG (the opsonized layer), an anti-inflammatory agent berberine (Bb), and an oxidative stress-responsive bilirubin grafted polylysine biomaterial (BR-PLL) for drug loading (the inner nanocore). In vitro studies confirmed that IgG/Bb@BRPL prefer to be phagocytosed by M1 macrophage, not M0. And the internalized IgG/Bb@BRPL effectively promoted macrophage polarization toward the M2 phenotype and protected nearby chondrocytes. In vivo studies suggested that IgG/Bb@BRPL significantly enhanced therapeutic outcomes by suppressing inflammation and promoting cartilage repair while not prolonging the retention period compared to non-opsonized counterparts. This proof-of-concept study provided a novel opsonization trapping strategy for OA drug delivery and treatment.


Assuntos
Nanopartículas , Osteoartrite , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Imunoglobulina G/farmacologia , Inflamação , Macrófagos , Osteoartrite/tratamento farmacológico
12.
Bioact Mater ; 9: 15-28, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820552

RESUMO

Reprogramed cellular metabolism is one of the most significant hallmarks of cancer. All cancer cells exhibit increased demand for specific amino acids, and become dependent on either an exogenous supply or upregulated de novo synthesis. The resultant enhanced availability of amino acids supports the reprogramed metabolic pathways and fuels the malignant growth and metastasis of cancers by providing energy and critical metabolic intermediates, facilitating anabolism, and activating signaling networks related to cell proliferation and growth. Therefore, pharmacologic blockade of amino acid entry into cancer cells is likely to have a detrimental effect on cancer cell growth. Here we developed a nanoplatform (LJ@Trp-NPs) to therapeutically target two transporters, SLC6A14 (ATB0,+) and SLC7A5 (LAT1), that are known to be essential for the sustenance of amino acid metabolism in most cancers. The LJ@Trp-NPs uses tryptophan to guide SLC6A14-targeted delivery of JPH203, a high-affinity inhibitor of SLC7A5. In the process, SLC6A14 is also down-regulated. We tested the ability of this strategy to synergize with the anticancer efficacy of lapatinib, an inhibitor of EGFR/HER1/HER2-assocated kinase. These studies show that blockade of amino acid entry amplifies the anticancer effect of lapatinib via interference with mTOR signaling, promotion of apoptosis, and suppression of cell proliferation and metastasis. This represents the first study to evaluate the impact of amino acid starvation on the anticancer efficacy of widely used kinase inhibitor.

13.
Int J Pharm ; 607: 120978, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34371152

RESUMO

Disulfiram (DSF) is an effective copper (Cu2+)-dependent antitumor agent. In the present study, we explored use of transferrin (Tf)-modified DSF/copper sulfide (CuS) nanocomplex (Tf-DSF/CuS) for glioma therapy. Tf was used as glioma targeting motifs, DSF as an anticancer agent, and CuS as a source of Cu2+ ions and a photothermal agent. DSF was loaded on CuS by metal-chelation, and released from the nanocomplex under acidic condition. The Tf-DSF/CuS complex exhibited high cytotoxic effect in vitro. Notably, cytotoxic activity was correlated with pH triggered release of Cu2+ which initiated non-toxicity to toxicity switch of DSF. Ultrasound-targeted microbubble destruction (UTMD) technique was used for highly selective accumulation of intravenous injected Tf-DSF/CuS in the glioma orthotopic tumor as compared with the free drugs and non-targeted DSF/CuS groups. Magnetic resonance imaging and pathological examinations showed that Tf-DSF/CuS effectively suppressed tumor growth, with an inhibition ratio of ~85%. Additionally, DSF load did not compromise photothermal conversion ability of CuS nanoparticles. Efficacy of the photothermal ablation therapy of Tf-DSF/CuS was evaluated under 808 nm laser irradiation both in vitro and in vivo. These findings show that copper-sulfide based disulfiram nanoparticles are effective agents for anti-glioma therapy.


Assuntos
Glioma , Nanopartículas , Cobre , Dissulfiram , Glioma/tratamento farmacológico , Humanos , Sulfetos
14.
Front Pharmacol ; 12: 625084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815107

RESUMO

Pancreatic cancer (PC) is one of the most common malignancies and also a leading cause of cancer-related mortality worldwide. Many studies have shown that epidermal growth factor receptor (EGFR) is highly expressed in PC, which provides a potential target for PC treatment. However, EGFR inhibitors use alone was proven ineffective in clinical trials, due to the persistence of cellular feedback mechanisms which foster therapeutic resistance to single targeting of EGFR. Specifically, the signal transducer and activator of transcription 3 (STAT3) is over-activated when receiving an EGFR inhibitor and is believed to be highly involved in the failure and resistance of EGFR inhibitor treatment. Therein, we hypothesized that dual inhibition of EGFR and STAT3 strategy could address the STAT3 induced resistance during EGFR inhibitor treatment. To this end, we tried to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles to co-load Alantolactone (ALA, a novel STAT3 inhibitor) and Erlotinib (ERL, an EGFR inhibitor) for pancreatic cancer to test our guess. The loading ratio of ALA and ERL was firstly optimized in vitro to achieve a combined cancer-killing effect. Then, the ALA- and ERL-co-loaded nanoparticles (AE@NPs) were successfully prepared and characterized, and the related anticancer effects and cellular uptake of AE@NPs were studied. We also further detailly explored the underlying mechanisms. The results suggested that AE@NPs with uniform particle size and high drug load could induce significant pancreatic cancer cell apoptosis and display an ideal anticancer effect. Mechanism studies showed that AE@NPs inhibited the phosphorylation of both EGFR and STAT3, indicating the dual suppression of these two signaling pathways. Additionally, AE@NPs could also activate the ROS-p38 axis, which is not observed in the single drug treatments. Collectively, the AE@NPs prepared in this study possess great potential for pancreatic cancer treatment by dual suppressing of EGFR and STAT3 pathways and activating ROS-responsive p38 MAPK pathway.

15.
Acta Biomater ; 122: 172-185, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33387663

RESUMO

Macrophage polarization is one of the main factors contributing to the proinflammatory milieu of transplanted islets. It causes significant islet loss. Bilirubin exhibits protective effects during the islet transplantation process, but the mode of delivering drugs along with the islet graft has not yet been developed. In addition, it remains unclear whether bilirubin or its derivatives can modulate macrophage polarization during islet transplantation. Therefore, this study aimed to develop an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets for protection and to explore its macrophage modulation activities. In in vitro studies, the PLL-BR was shown to tightly adhere to the islet surface. It also exhibited enhanced cytoprotective effects against oxidative and inflammatory conditions by promoting M2-type macrophage polarization. In in vivo studies, the PLL-BR-protected islets successfully prolonged the euglycemia period in diabetic mice and accelerated the blood glucose clearance rate by maintaining the insulin secretion function. Compared to the untreated islets, the PLL-BR-encapsulated islets induced anti-inflammatory responses that were characterized by elevated levels of M2 macrophage markers and local vascularization. In conclusion, PLL-BR can be used as a tool for reprograming macrophage polarization while providing a more efficient immune protection for transplanted islets. STATEMENT OF SIGNIFICANCE: Macrophage polarization is one main factor that caused significant loss of transplanted islets. Bilirubin possesses protective effects toward pancreatic islet, but how to deliver the drug along with the islet graft has not yet been harnessed. More importantly, whether bilirubin or its derivatives could modulate macrophage polarization during the host rejections has also not been answered. In this study, we developed an ε-polylysine-bilirubin conjugate (PLL-BR) to encapsulate the islets and explore its role in macrophage modulation activities. PLL-BR could attach to the surface of islets and exerted high oxidation resistance and anti-inflammatory effect. For the first time, we demonstrate that bilirubin and its derivatives effectively promoted the M2-type macrophage polarization, and optimize the immune microenvironment for islets survival and function.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Bilirrubina , Macrófagos , Camundongos , Polilisina/farmacologia
16.
Bioorg Med Chem Lett ; 33: 127728, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346010

RESUMO

Triptolide (TP) is a diterpene epoxide component extracted from Tripterygium wilfordii and has been shown to possess an impressive anticancer effect. However, TP has not yet entered any clinic trials due to the severe adverse effects that resulted from the off-target absorption and distribution found in animal studies. In this study, we designed and synthesized three amino acids (tryptophan, valine, and lysine) based TP prodrugs to target ATB0,+ which are highly expressed in pancreatic cancer cells for more effective pancreatic cancer therapy. The stability, uptake profiles, uptake mechanism, and cancer-killing ability were studied in vitro. All three prodrugs showed increased uptake and enhanced cytotoxicity in pancreatic cancer cells, but not in normal pancreatic cells. The difference in killing effect on normal and cancer cells was attributed to pancreatic cancer over-expressed ATB0,+-mediated uptake. Specifically, tryptophan-conjugated TP prodrug (TP-Trp) showed the highest uptake and the best cancer cell killing effect, considered as the best candidate. The present study provided the proof-of-concept of exploiting TP prodrug to target ATB0,+ for pancreatic cancer-selective delivery and treatment.


Assuntos
Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Fenantrenos/farmacologia , Pró-Fármacos/farmacologia , Sistemas de Transporte de Aminoácidos/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Humanos , Conformação Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fenantrenos/síntese química , Fenantrenos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
17.
Curr Pharm Biotechnol ; 22(4): 451-467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32603279

RESUMO

Matrix Metalloproteinases (MMPs), as a family of zinc-containing enzymes, show the function of decomposing Extracellular Matrix (ECM) and participate in the physiological processes of cell migration, growth, inflammation, and metabolism. Clinical and experimental studies have indicated that MMPs play an essential role in tissue injury and repair as well as tumor diagnosis, metastasis, and prognosis. An increasing number of researchers have paid attention to their functions and mechanisms in bone health and diseases. The present review focuses on MMPs-inspired therapeutic strategies for the treatment of bone-related diseases. We introduce the role of MMPs in bone diseases, highlight the MMPs-inspired therapeutic options, and posit MMPs as a trigger for smart cell/drug delivery.


Assuntos
Doenças Ósseas/tratamento farmacológico , Metaloproteinases da Matriz/uso terapêutico , Animais , Matriz Extracelular , Humanos , Metaloproteinases da Matriz/administração & dosagem
18.
Cancers (Basel) ; 12(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019627

RESUMO

Nano-devices are recognized as increasingly attractive to deliver therapeutics to target cells. The specificity of this approach can be improved by modifying the surface of the delivery vehicles such that they are recognized by the target cells. In the past, cell-surface receptors were exploited for this purpose, but plasma membrane transporters also hold similar potential. Selective transporters are often highly expressed in biological barriers (e.g., intestinal barrier, blood-brain barrier, and blood-retinal barrier) in a site-specific manner, and play a key role in the vectorial transfer of nutrients. Similarly, selective transporters are also overexpressed in the plasma membrane of specific cell types under pathological states to meet the biological needs demanded by such conditions. Nano-drug delivery systems could be strategically modified to make them recognizable by these transporters to enhance the transfer of drugs across the biological barriers or to selectively expose specific cell types to therapeutic drugs. Here, we provide a comprehensive review and detailed evaluation of the recent advances in the field of transporter-targeted nano-drug delivery systems. We specifically focus on areas related to intestinal absorption, transfer across blood-brain barrier, tumor-cell selective targeting, ocular drug delivery, identification of the transporters appropriate for this purpose, and details of the rationale for the approach.

19.
Theranostics ; 10(25): 11719-11736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052243

RESUMO

Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.


Assuntos
Materiais Biomiméticos/administração & dosagem , Neoplasias Encefálicas/terapia , Glioma/terapia , Hidrogéis/administração & dosagem , Terapia Fototérmica/métodos , Animais , Biliverdina/química , Materiais Biomiméticos/química , Bombyx , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Fibroínas/química , Glioma/patologia , Humanos , Hidrogéis/química , Raios Infravermelhos , Injeções Intralesionais , Masculino , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Células RAW 264.7 , Ratos , Reprodutibilidade dos Testes , Pele/efeitos dos fármacos , Pele/lesões , Cicatrização/efeitos dos fármacos
20.
J Control Release ; 328: 407-424, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32882272

RESUMO

Bilirubin is a yellow-colored metabolite of heme degradation (a bile pigment), once believed to be toxic, but recently recognized as a powerful endogenous antioxidant of physiologic importance. During the past two decades, several studies have demonstrated the potential of bilirubin in theranostic applications. Here this paper summarizes the current state of the field, providing a detailed review of the published literature on the theranostic applications of bilirubin-conjugated nanoparticles and the basis and mechanisms underlying their efficacy. This review covers the analytical description of the construction of the nanoparticulate bilirubin system, primary mechanisms of therapeutic action, drug delivery, and imaging potential. It also lays out the possible translational future of bilirubin-conjugated nanoparticles in therapy and diagnosis.


Assuntos
Bilirrubina , Nanopartículas , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA