Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 64, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438896

RESUMO

BACKGROUND: Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS: 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS: We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION: Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.


Assuntos
Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Humanos , Feminino , Animais , Camundongos , Idoso , Insuficiência Ovariana Primária/terapia , Oócitos , Células-Tronco , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
2.
Stem Cell Reports ; 17(7): 1730-1742, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750045

RESUMO

Somatic cell nuclear transfer (SCNT) can reprogram terminally differentiated somatic cells into totipotent embryos, but with multiple defects. The nucleosome positioning, as an important epigenetic regulator for gene expression, is largely unexplored during SCNT embryonic development. Here, we mapped genome-wide nucleosome profiles in mouse SCNT embryos using ultra-low-input MNase-seq (ULI-MNase-seq). We found that the nucleosome-depleted regions (NDRs) around promoters underwent dramatic reestablishment, which is consistent with the cell cycle. Dynamics of nucleosome position in SCNT embryos were delayed compared to fertilized embryos. Subsequently, we found that the aberrant gene expression levels in inner cell mass (ICM) were positively correlated with promoter NDRs in donor cells, which indicated that the memory of nucleosome occupancy in donor cells was a potential barrier for SCNT-mediated reprogramming. We further confirmed that the histone acetylation level of donor cells was associated with the memory of promoter NDRs. Our study provides insight into nucleosome reconfiguration during SCNT preimplantation embryonic development.


Assuntos
Histonas , Nucleossomos , Animais , Blastocisto , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Histonas/metabolismo , Camundongos , Técnicas de Transferência Nuclear , Nucleossomos/metabolismo
3.
Science ; 376(6596): 968-973, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35511947

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification on mammalian messenger RNA. It is installed by a writer complex and can be reversed by erasers such as the fat mass and obesity-associated protein FTO. Despite extensive research, the primary physiological substrates of FTO in mammalian tissues and development remain elusive. Here, we show that FTO mediates m6A demethylation of long-interspersed element-1 (LINE1) RNA in mouse embryonic stem cells (mESCs), regulating LINE1 RNA abundance and the local chromatin state, which in turn modulates the transcription of LINE1-containing genes. FTO-mediated LINE1 RNA m6A demethylation also plays regulatory roles in shaping chromatin state and gene expression during mouse oocyte and embryonic development. Our results suggest broad effects of LINE1 RNA m6A demethylation by FTO in mammals.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Elementos Nucleotídeos Longos e Dispersos , Células-Tronco Embrionárias Murinas , Oócitos , RNA Mensageiro , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Cromatina/metabolismo , Desmetilação , Elementos Nucleotídeos Longos e Dispersos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Oócitos/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Nat Cell Biol ; 24(6): 917-927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606490

RESUMO

N6-methyladenosine (m6A) and its regulatory components play critical roles in various developmental processes in mammals. However, the landscape and function of m6A in early embryos remain unclear owing to limited materials. Here we developed a method of ultralow-input m6A RNA immunoprecipitation followed by sequencing to reveal the transcriptome-wide m6A landscape in mouse oocytes and early embryos and found unique enrichment and dynamics of m6A RNA modifications on maternal and zygotic RNAs, including the transcripts of transposable elements MTA and MERVL. Notably, we found that the maternal protein KIAA1429, a component of the m6A methyltransferase complex, was essential for m6A deposition on maternal mRNAs that undergo decay after zygotic genome activation and MTA transcripts to maintain their stability in oocytes. Interestingly, m6A methyltransferases, especially METTL3, deposited m6A on mRNAs transcribed during zygotic genome activation and ensured their decay after the two-cell stage, including Zscan4 and MERVL. Together, our findings uncover the essential functions of m6A in specific contexts during the maternal-to-zygotic transition, namely ensuring the stability of mRNAs in oocytes and the decay of two-cell-specific transcripts after fertilization.


Assuntos
Desenvolvimento Embrionário , RNA , Animais , Camundongos , Adenosina/análogos & derivados , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismo , Oócitos/metabolismo , RNA/genética , RNA/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Zigoto/metabolismo
5.
J Pineal Res ; 72(1): e12778, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34726796

RESUMO

Increasing evidence suggests that in vitro fertilization (IVF) may be associated with an increased risk of developing obesity and metabolic diseases later in life in the offspring. Notably, the addition of melatonin to culture medium may improve embryo development and prevent cardiovascular dysfunction in IVF adult mice. This study aimed to determine if melatonin supplementation in the culture medium can reverse impaired glucose metabolism in IVF mice offspring and the underlying mechanisms. Blastocysts used for transfer were generated by natural mating (control group) or IVF with or without melatonin (10-6  M) supplementation (mIVF and IVF group, respectively) in clinical-grade culture media. Here, we first report that IVF decreased hepatic expression of Fbxl7, which was associated with impaired glucose metabolism in mice offspring. Melatonin addition reversed the phenotype by up-regulating the expression of hepatic Fbxl7. In vitro experiments showed that Fbxl7 enhanced the insulin signaling pathway by degrading RhoA through ubiquitination and was up-regulated by transcription factor Foxa2. Specific knockout of Fbxl7 in the liver of adult mice, through tail intravenous injection of recombinant adeno-associated virus, impaired glucose tolerance, while overexpression of hepatic Fbxl7 significantly improved glucose tolerance in adult IVF mice. Thus, the data suggest that Fbxl7 plays an important role in maintaining glucose metabolism of mice, and melatonin supplementation in the culture medium may rescue the long-term risk of metabolic diseases in IVF offspring.


Assuntos
Melatonina , Animais , Blastocisto , Meios de Cultura , Suplementos Nutricionais , Fertilização in vitro , Glucose , Melatonina/farmacologia , Camundongos
6.
Cell Prolif ; 54(11): e13133, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34585448

RESUMO

OBJECTIVES: Maternal factors that are enriched in oocytes have attracted great interest as possible key factors in somatic cell reprogramming. We found that surfeit locus protein 4 (Surf4), a maternal factor, can facilitate the generation of induced pluripotent stem cells (iPSCs) previously, but the mechanism remains elusive. MATERIALS AND METHODS: In this study, we investigated the function and mechanism of Surf4 in somatic cell reprogramming using a secondary reprogramming system. Alkaline phosphatase (AP) staining, qPCR and immunofluorescence (IF) staining of expression of related markers were used to evaluate efficiency of iPSCs derived from mouse embryonic fibroblasts. Embryoid body and teratoma formation assays were performed to evaluate the differentiation ability of the iPSC lines. RNA-seq, qPCR and western blot analysis were applied to validate the downstream targets of Surf4. RESULTS: Surf4 can significantly facilitate the generation of iPSCs in a proliferation-independent manner. When co-expressed with Oct4, Sox2, Klf4 and c-Myc (OSKM), Surf4 can activate the response to endoplasmic reticulum (ER) stress at the early stage of reprogramming. We further demonstrated that Hspa5, a major ER chaperone, and the active spliced form of Xbp1 (sXbp1), a major mediator of ER stress, can mimic the effects of Surf4 on somatic cell reprogramming. Concordantly, blocking the unfolded protein response compromises the effect of Surf4 on reprogramming. CONCLUSIONS: Surf4 promotes somatic cell reprogramming by activating the response to ER stress.


Assuntos
Reprogramação Celular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Diferenciação Celular/fisiologia , Corpos Embrioides/metabolismo , Chaperona BiP do Retículo Endoplasmático , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Fatores de Transcrição/metabolismo
7.
Protein Cell ; 12(6): 455-474, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33886094

RESUMO

N6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, plays important roles in tuning the chromatin state and transcription, but the intrinsic mechanism remains unclear. Here, we report that YTHDC1 plays indispensable roles in the self-renewal and differentiation potency of mouse embryonic stem cells (ESCs), which highly depends on the m6A-binding ability. Ythdc1 is required for sufficient rRNA synthesis and repression of the 2-cell (2C) transcriptional program in ESCs, which recapitulates the transcriptome regulation by the LINE1 scaffold. Detailed analyses revealed that YTHDC1 recognizes m6A on LINE1 RNAs in the nucleus and regulates the formation of the LINE1-NCL partnership and the chromatin recruitment of KAP1. Moreover, the establishment of H3K9me3 on 2C-related retrotransposons is interrupted in Ythdc1-depleted ESCs and inner cell mass (ICM) cells, which consequently increases the transcriptional activities. Our study reveals a role of m6A in regulating the RNA scaffold, providing a new model for the RNA-chromatin cross-talk.


Assuntos
Adenosina/metabolismo , Células-Tronco Embrionárias Murinas , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Transcrição Gênica
8.
Cell Stem Cell ; 28(4): 732-747.e9, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33357405

RESUMO

Telomeres play vital roles in ensuring chromosome stability and are thus closely linked with the onset of aging and human disease. Telomeres undergo extensive lengthening during early embryogenesis. However, the detailed molecular mechanism of telomere resetting in early embryos remains unknown. Here, we show that Dcaf11 (Ddb1- and Cul4-associated factor 11) participates in telomere elongation in early embryos and 2-cell-like embryonic stem cells (ESCs). The deletion of Dcaf11 in embryos and ESCs leads to reduced telomere sister-chromatid exchange (T-SCE) and impairs telomere lengthening. Importantly, Dcaf11-deficient mice exhibit gradual telomere erosion with successive generations, and hematopoietic stem cell (HSC) activity is also greatly compromised. Mechanistically, Dcaf11 targets Kap1 (KRAB-associated protein 1) for ubiquitination-mediated degradation, leading to the activation of Zscan4 downstream enhancer and the removal of heterochromatic H3K9me3 at telomere/subtelomere regions. Our study therefore demonstrates that Dcaf11 plays important roles in telomere elongation in early embryos and ESCs through activating Zscan4.


Assuntos
Homeostase do Telômero , Telômero , Animais , Células-Tronco Embrionárias , Camundongos
9.
Cell Stem Cell ; 28(1): 150-163.e5, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33049217

RESUMO

Differentiated somatic cells can be reprogrammed to totipotent embryos through somatic cell nuclear transfer (SCNT) with low efficiency. The histone deacetylase inhibitor trichostatin A (TSA) has been found to improve SCNT efficiency, but the underlying mechanism remains undetermined. Here, we examined genome-wide H3K9ac during SCNT embryo development and found that aberrant H3K9ac regions resulted in reduced 2-cell genome activation. TSA treatment largely corrects aberrant acetylation in SCNT embryos with an efficiency that is dictated by the native epigenetic environment. We further identified that the overexpression of Dux greatly improves SCNT efficiency by correcting the aberrant H3K9ac signal at its target sites, ensuring appropriate 2-cell genome activation. Intriguingly, the improvement in development mediated by TSA and Kdm4b is impeded by Dux knockout in SCNT embryos. Together, our study reveals that reprogramming of H3K9ac is important for optimal SCNT efficiency and identifies Dux as a crucial transcription factor in this process.


Assuntos
Blastocisto , Embrião de Mamíferos , Clonagem de Organismos , Desenvolvimento Embrionário , Inibidores de Histona Desacetilases/farmacologia , Histonas , Ácidos Hidroxâmicos/farmacologia , Técnicas de Transferência Nuclear
10.
J Am Chem Soc ; 141(22): 8694-8697, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117646

RESUMO

5-Hydroxymethylcytosine (5hmC) arises from the oxidation of 5-methylcytosine (5mC) by Fe2+ and 2-oxoglutarate-dependent 10-11 translocation (TET) family proteins. Substantial levels of 5hmC accumulate in many mammalian tissues, especially in neurons and embryonic stem cells, suggesting a potential active role for 5hmC in epigenetic regulation beyond being simply an intermediate of active DNA demethylation. 5mC and 5hmC undergo dynamic changes during embryogenesis, neurogenesis, hematopoietic development, and oncogenesis. While methods have been developed to map 5hmC, more efficient approaches to detect 5hmC at base resolution are still highly desirable. Herein, we present a new method, Jump-seq, to capture and amplify 5hmC in genomic DNA. The principle of this method is to label 5hmC by the 6- N3-glucose moiety and connect a hairpin DNA oligonucleotide carrying an alkyne group to the azide-modified 5hmC via Huisgen cycloaddition (click) chemistry. Primer extension starts from the hairpin motif to the modified 5hmC site and then continues to "land" on genomic DNA. 5hmC sites are inferred from genomic DNA sequences immediately spanning the 5-prime junction. This technology was validated, and its utility in 5hmC identification was confirmed.


Assuntos
5-Metilcitosina/análogos & derivados , Genômica , 5-Metilcitosina/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Técnicas de Amplificação de Ácido Nucleico
11.
Cell Stem Cell ; 23(3): 426-435.e5, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146410

RESUMO

Somatic cell nuclear transfer (SCNT) enables cloning of differentiated cells by reprogramming their nuclei to a totipotent state. However, successful full-term development of SCNT embryos is a low-efficiency process and arrested embryos frequently exhibit epigenetic abnormalities. Here, we generated genome-wide DNA methylation maps from mouse pre-implantation SCNT embryos. We identified widespread regions that were aberrantly re-methylated, leading to mis-expression of genes and retrotransposons important for zygotic genome activation. Inhibition of DNA methyltransferases (Dnmts) specifically rescued these re-methylation defects and improved the developmental capacity of cloned embryos. Moreover, combining inhibition of Dnmts with overexpression of histone demethylases led to stronger reductions in inappropriate DNA methylation and synergistic enhancement of full-term SCNT embryo development. These findings show that excessive DNA re-methylation is a potent barrier that limits full-term development of SCNT embryos and that removing multiple epigenetic barriers is a promising approach to achieve higher cloning efficiency.


Assuntos
Metilação de DNA , DNA/metabolismo , Desenvolvimento Embrionário , Técnicas de Transferência Nuclear , Animais , Células Cultivadas , DNA/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR
12.
Stem Cell Reports ; 9(5): 1692-1705, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29033306

RESUMO

Mammalian oocytes possess fascinating unknown factors, which can reprogram terminally differentiated germ cells or somatic cells into totipotent embryos. Here, we demonstrate that oocyte-specific homeobox 1 (Obox1), an oocyte-specific factor, can markedly enhance the generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts in a proliferation-independent manner and can replace Sox2 to achieve pluripotency. Overexpression of Obox1 can greatly promote mesenchymal-to-epithelial transition (MET) at early stage of OSKM-induced reprogramming, and meanwhile, the hyperproliferation of THY1-positive cells can be significantly mitigated. Subsequently, the proportion of THY1-negative cells and Oct4-GFP-positive cells increased dramatically. Further analysis of gene expression and targets of Obox1 during reprogramming indicates that the expression of Obox1 can promote epithelial gene expression and modulate cell-cycle-related gene expression. Taken together, we conclude that the oocyte-specific factor Obox1 serves as a strong activator for somatic cell reprogramming through promoting the MET and mitigating cell hyperproliferation.


Assuntos
Proliferação de Células , Reprogramação Celular , Células Epiteliais/citologia , Proteínas de Homeodomínio/metabolismo , Mesoderma/citologia , Animais , Células Cultivadas , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
13.
J Mol Cell Biol ; 9(4): 274-288, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419336

RESUMO

Ca2+ signals participate in various cellular processes with spatial and temporal dynamics, among which, inositol 1,4,5-trisphosphate receptors (IP3Rs)-mediated Ca2+ signals are essential for early development. However, the underlying mechanisms of IP3R-regulated cell fate decision remain largely unknown. Here we report that IP3Rs are required for the hematopoietic and cardiac fate divergence of mouse embryonic stem cells (mESCs). Deletion of IP3Rs (IP3R-tKO) reduced Flk1+/PDGFRα- hematopoietic mesoderm, c-Kit+/CD41+ hematopoietic progenitor cell population, and the colony-forming unit activity, but increased cardiac progenitor markers as well as cardiomyocytes. Concomitantly, the expression of a key regulator of hematopoiesis, Etv2, was reduced in IP3R-tKO cells, which could be rescued by the activation of Ca2+ signals and calcineurin or overexpression of constitutively active form of NFATc3. Furthermore, IP3R-tKO impaired specific targeting of Etv2 by NFATc3 via its evolutionarily conserved cis-element in differentiating ESCs. Importantly, the activation of Ca2+-calcineurin-NFAT pathway reversed the phenotype of IP3R-tKO cells. These findings reveal an unrecognized governing role of IP3Rs in hematopoietic and cardiac fate commitment via IP3Rs-Ca2+-calcineurin-NFATc3-Etv2 pathway.


Assuntos
Diferenciação Celular , Hematopoese , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Autorrenovação Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
14.
Cell Discov ; 2: 16010, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462457

RESUMO

Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos.

15.
Stem Cells Dev ; 24(23): 2767-77, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26192905

RESUMO

Most neurodegenerative diseases are late-onset and aging-related, and no effective treatments have been developed. The successful generation of induced pluripotent stem cells (iPSCs) and the direct conversion of neurons from patients' specific somatic cells have offered cell resources for disease modeling and potential cell transplantation therapy. However, to date, no systematic studies have investigated which approach is more suitable for future cell therapy. In this study, using the two approaches mentioned above in parallel we successfully obtained functional neurons from tail-tip fibroblasts (TTFs) of a 1-year-old mouse, which were characterized by specialized morphologies, neuronal marker expressions, and electrophysiological properties. Genome-wide expression analysis revealed that a set of genes related to the stress response and DNA damage were expressed at a much higher level in iNs than in diNs derived from 1-year-old TTFs. Subsequently, significant decreases in mitochondrial dysfunction and DNA damage were observed in diNs compared with iNs derived from aged TTFs. Moreover, the levels of epigenetic markers such as 5hmC, H3K4me3, H3K9me3, and H3K27me3 in iNs were more similar to those in the old TTFs compared with those in diNs, indicating that the iNs converted directly from TTFs may retain some residual epigenetic memories. By contrast, reprogramming to iPSCs not only rejuvenated the cell stages, but also erased such epigenetic memories obtained along the aging process. Taken together, the results of our study are instructive and meaningful for future clinical applications.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Cauda/citologia , Animais , Células Cultivadas , Dano ao DNA/genética , Epigênese Genética , Fibroblastos/metabolismo , Histonas/genética , Histonas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Cauda/crescimento & desenvolvimento
16.
FASEB J ; 29(5): 1986-98, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25667220

RESUMO

Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.


Assuntos
Hidrocarboneto de Aril Hidroxilases/genética , Glucuronosiltransferase/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Neoplasias Pulmonares/genética , Pulmão/metabolismo , Polimorfismo Genético/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Estudos de Casos e Controles , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Glucuronosiltransferase/metabolismo , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Antígenos de Histocompatibilidade Menor , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Ativação Transcricional , Células Tumorais Cultivadas
17.
Cell Rep ; 6(6): 1008-1016, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24630997

RESUMO

It has been demonstrated that reprogramming factors are sequestered in the pronuclei of zygotes after fertilization, because zygotes enucleated at the M phase instead of interphase of the first mitosis can support the development of cloned embryos. However, the contribution of the parental pronucleus derived from either the sperm or the oocyte in reprogramming remains elusive. Here, we demonstrate that the parental pronuclei have asymmetric reprogramming capacities and that the reprogramming factors reside predominantly in the male pronucleus. As a result, only female pronucleus-depleted (FPD) mouse zygotes can reprogram somatic cells to a pluripotent state and support the full-term development of cloned embryos; male pronucleus-depleted (MPD) zygotes fail to support somatic cell reprogramming. We further demonstrate that fusion of an additional male pronucleus into a zygote greatly enhances reprogramming efficiency. Our data provide a clue to further identify critical reprogramming factors in the male pronucleus.


Assuntos
Reprogramação Celular/fisiologia , Zigoto/fisiologia , Animais , Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Reprogramação Celular/genética , Clonagem de Organismos/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Epigenômica , Feminino , Masculino , Camundongos , Mitose/fisiologia , Técnicas de Transferência Nuclear , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Zigoto/citologia
18.
Cell Stem Cell ; 14(1): 27-39, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24268696

RESUMO

Although somatic cell nuclear transfer (SCNT) and induction of pluripotency (to form iPSCs) are both recognized reprogramming methods, there has been relatively little comparative analysis of the resulting pluripotent cells. Here, we examine the capacity of these two reprogramming approaches to rejuvenate telomeres using late-generation telomerase-deficient (Terc(-/-)) mice that exhibit telomere dysfunction and premature aging. We found that embryonic stem cells established from Terc(-/-) SCNT embryos (Terc(-/-) ntESCs) have greater differentiation potential and self-renewal capacity than Terc(-/-) iPSCs. Remarkably, SCNT results in extensive telomere lengthening in cloned embryos and improved telomere capping function in the established Terc(-/-) ntESCs. In addition, mitochondrial function is severely impaired in Terc(-/-) iPSCs and their differentiated derivatives but significantly improved in Terc(-/-) ntESCs. Thus, our results suggest that SCNT-mediated reprogramming mitigates telomere dysfunction and mitochondrial defects to a greater extent than iPSC-based reprogramming. Understanding the basis of this differential could help optimize reprogramming strategies.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Transferência Nuclear , RNA/fisiologia , Telomerase/fisiologia , Telômero/genética , Trifosfato de Adenosina/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Hibridização in Situ Fluorescente , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Placa Neural/metabolismo , Placa Neural/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cell Stem Cell ; 12(4): 453-69, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23499384

RESUMO

DNA methylation and demethylation have been proposed to play an important role in somatic cell reprogramming. Here, we demonstrate that the DNA hydroxylase Tet1 facilitates pluripotent stem cell induction by promoting Oct4 demethylation and reactivation. Moreover, Tet1 (T) can replace Oct4 and initiate somatic cell reprogramming in conjunction with Sox2 (S), Klf4 (K), and c-Myc (M). We established an efficient TSKM secondary reprogramming system and used it to characterize the dynamic profiles of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), and gene expression during reprogramming. Our analysis revealed that both 5mC and 5hmC modifications increased at an intermediate stage of the process, correlating with a transition in the transcriptional profile. We also found that 5hmC enrichment is involved in the demethylation and reactivation of genes and regulatory regions that are important for pluripotency. Our data indicate that changes in DNA methylation and hydroxymethylation play important roles in genome-wide epigenetic remodeling during reprogramming.


Assuntos
Reprogramação Celular , Citosina/análogos & derivados , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Reprogramação Celular/genética , Citosina/metabolismo , Metilação de DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Modelos Biológicos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA