Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(15): 1955-1962, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39012171

RESUMO

In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites due to their ability to inhibit bacterial growth. In this study, we have examined the reactivity of adenosylrhodibalamin (AdoRhbl) with two key human chaperones, MMACHC (also known as CblC) and adenosyltransferase (MMAB, also known as ATR), and with the human and Mycobacterium tuberculosis MMUT. We demonstrate that while AdoRhbl binds tightly to all four proteins, the Rh-carbon bond is resistant to homolytic (on MMAB and MMUT) as well as heterolytic (on MMACHC) rupture. On the other hand, MMAB catalyzes Rh-carbon bond formation, converting rhodi(I)balamin in the presence of ATP to AdoRhbl. We report the first crystal structure of a rhodibalamin (AdoRhbl) bound to a B12 protein, i.e., MMAB, in the presence of triphosphate, which shows a weakened but intact Rh-carbon bond. The structure provides insights into how MMAB cleaves the corresponding Co-carbon bond in a sacrificial homolytic reaction that purportedly functions as a cofactor sequestration strategy. Collectively, the study demonstrates that while the noble metal substitution of cobalt by rhodium sets up structural mimicry, it compromises chemistry, which could be exploited for targeting human and bacterial B12 chaperones and enzymes.


Assuntos
Vitamina B 12 , Vitamina B 12/metabolismo , Vitamina B 12/química , Vitamina B 12/análogos & derivados , Humanos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Metilmalonil-CoA Mutase/química , Ródio/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Mimetismo Molecular , Modelos Moleculares , Alquil e Aril Transferases
2.
Nat Commun ; 15(1): 5167, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886362

RESUMO

Methylenetetrahydrofolate reductase (MTHFR) is a pivotal flavoprotein connecting the folate and methionine methyl cycles, catalyzing the conversion of methylenetetrahydrofolate to methyltetrahydrofolate. Human MTHFR (hMTHFR) undergoes elaborate allosteric regulation involving protein phosphorylation and S-adenosylmethionine (AdoMet)-dependent inhibition, though other factors such as subunit orientation and FAD status remain understudied due to the lack of a functional structural model. Here, we report crystal structures of Chaetomium thermophilum MTHFR (cMTHFR) in both active (R) and inhibited (T) states. We reveal FAD occlusion by Tyr361 in the T-state, which prevents substrate interaction. Remarkably, the inhibited form of cMTHFR accommodates two AdoMet molecules per subunit. In addition, we conducted a detailed investigation of the phosphorylation sites in hMTHFR, three of which were previously unidentified. Based on the structural framework provided by our cMTHFR model, we propose a possible mechanism to explain the allosteric structural transition of MTHFR, including the impact of phosphorylation on AdoMet-dependent inhibition.


Assuntos
Chaetomium , Metilenotetra-Hidrofolato Redutase (NADPH2) , S-Adenosilmetionina , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Regulação Alostérica , Chaetomium/enzimologia , Chaetomium/metabolismo , Chaetomium/genética , Fosforilação , Humanos , Cristalografia por Raios X , Modelos Moleculares , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química
3.
RNA ; 30(9): 1141-1150, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38942480

RESUMO

SARS-CoV-2, the causative virus of the COVID-19 pandemic, follows SARS and MERS as recent zoonotic coronaviruses causing severe respiratory illness and death in humans. The recurrent impact of zoonotic coronaviruses demands a better understanding of their fundamental molecular biochemistry. Nucleoside modifications, which modulate many steps of the RNA life cycle, have been found in SARS-CoV-2 RNA, although whether they confer a pro- or antiviral effect is unknown. Regardless, the viral RNA-dependent RNA polymerase will encounter these modifications as it transcribes through the viral genomic RNA. We investigated the functional consequences of nucleoside modification on the pre-steady state kinetics of SARS-CoV-2 RNA-dependent RNA transcription using an in vitro reconstituted transcription system with modified RNA templates. Our findings show that N 6-methyladenosine and 2'-O-methyladenosine modifications slow the rate of viral transcription at magnitudes specific to each modification, which has the potential to impact SARS-CoV-2 genome maintenance.


Assuntos
Adenosina , RNA Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Transcrição Viral/genética , COVID-19/virologia , COVID-19/genética , Transcrição Gênica , Genoma Viral , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética
4.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617233

RESUMO

Ferroptosis is an iron-dependent, non-apoptotic form of cell death resulting from the accumulation of lipid peroxides. Colorectal cancer (CRC) accumulates high levels of intracellular iron and reactive oxygen species (ROS), thereby sensitizing cells to ferroptosis. The selenoprotein glutathione peroxidase (GPx4) is a key enzyme in the detoxification of lipid peroxides and can be inhibited by the compound (S)-RSL3 ([1S,3R]-RSL3). However, the stereoisomer (R)-RSL3 ([1R,3R]-RSL3), which does not inhibit GPx4, exhibits equipotent activity to (S)-RSL3 across a panel of CRC cell lines. Utilizing CRC cell lines with an inducible knockdown of GPx4, we demonstrate that (S)-RSL3 sensitivity does not align with GPx4 dependency. Subsequently, a biotinylated (S)-RSL3 was then synthesized to perform affinity purification-mass spectrometry (AP-MS), revealing that (S)-RSL3 acts as a pan-inhibitor of the selenoproteome, targeting both the glutathione and thioredoxin peroxidase systems as well as multiple additional selenoproteins. To investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed further chemical and genetic approaches to disrupt selenoprotein function. The findings demonstrate that the selenoprotein inhibitor Auranofin can induce ferroptosis and/or oxidative cell death both in-vitro and in-vivo. Consistent with this data we observe that AlkBH8, a tRNA-selenocysteine methyltransferase required for the translational incorporation of selenocysteine, is essential for CRC growth. In summary, our research elucidates the complex mechanisms underlying ferroptosis in CRC and reveals that modulation of the selenoproteome provides multiple new therapeutic targets and opportunities in CRC.

5.
Nat Commun ; 14(1): 6365, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821448

RESUMO

Cobalamin-dependent methionine synthase (MS) is a key enzyme in methionine and folate one-carbon metabolism. MS is a large multi-domain protein capable of binding and activating three substrates: homocysteine, folate, and S-adenosylmethionine for methylation. Achieving three chemically distinct methylations necessitates significant domain rearrangements to facilitate substrate access to the cobalamin cofactor at the right time. The distinct conformations required for each reaction have eluded structural characterization as its inherently dynamic nature renders structural studies difficult. Here, we use a thermophilic MS homolog (tMS) as a functional MS model. Its exceptional stability enabled characterization of MS in the absence of cobalamin, marking the only studies of a cobalamin-binding protein in its apoenzyme state. More importantly, we report the high-resolution full-length MS structure, ending a multi-decade quest. We also capture cobalamin loading in crystallo, providing structural insights into holoenzyme formation. Our work paves the way for unraveling how MS orchestrates large-scale domain rearrangements crucial for achieving challenging chemistries.


Assuntos
5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Metionina , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Ácido Fólico , Vitamina B 12/metabolismo
6.
Trends Cancer ; 9(12): 1006-1018, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716885

RESUMO

In the past two decades significant progress has been made in uncovering the biological function of selenium. Selenium, an essential trace element, is required for the biogenesis of selenocysteine which is then incorporated into selenoproteins. These selenoproteins have emerged as central regulators of cellular antioxidant capacity and maintenance of redox homeostasis. This review provides a comprehensive examination of the multifaceted functions of selenoproteins with a particular emphasis on their contributions to cellular antioxidant capacity. Additionally, we highlight the promising potential of targeting selenoproteins and the biogenesis of selenocysteine as avenues for therapeutic intervention in cancer. By understanding the intricate relationship between selenium, selenoproteins, and reactive oxygen species (ROS), insights can be gained to develop therapies that exploit the inherent vulnerabilities of cancer cells.


Assuntos
Neoplasias , Selênio , Humanos , Antioxidantes , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Oxirredução , RNA de Transferência , Homeostase , Neoplasias/genética
7.
J Biol Chem ; 298(12): 102683, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370850

RESUMO

The first step in transfer RNA (tRNA) maturation is the cleavage of the 5' end of precursor tRNA (pre-tRNA) catalyzed by ribonuclease P (RNase P). RNase P is either a ribonucleoprotein complex with a catalytic RNA subunit or a protein-only RNase P (PRORP). In most land plants, algae, and Euglenozoa, PRORP is a single-subunit enzyme. There are currently no inhibitors of PRORP for use as tools to study the biological function of this enzyme. Therefore, we screened for compounds that inhibit the activity of a model PRORP from A. thaliana organelles (PRORP1) using a high throughput fluorescence polarization cleavage assay. Two compounds, gambogic acid and juglone (5-hydroxy-1,4-naphthalenedione) that inhibit PRORP1 in the 1 µM range were identified and analyzed. We found these compounds similarly inhibit human mtRNase P, a multisubunit protein enzyme and are 50-fold less potent against bacterial RNA-dependent RNase P. Our biochemical measurements indicate that gambogic acid is a rapid-binding, uncompetitive inhibitor targeting the PRORP1-substrate complex, while juglone acts as a time-dependent PRORP1 inhibitor. Additionally, X-ray crystal structures of PRORP1 in complex with juglone demonstrate the formation of a covalent complex with cysteine side chains on the surface of the protein. Finally, we propose a model consistent with the kinetic data that involves juglone binding to PRORP1 rapidly to form an inactive enzyme-inhibitor complex and then undergoing a slow step to form an inactive covalent adduct with PRORP1. These inhibitors have the potential to be developed into tools to probe PRORP structure and function relationships.


Assuntos
Naftoquinonas , Ribonuclease P , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Naftoquinonas/farmacologia , Ribonuclease P/antagonistas & inibidores , Ribonuclease P/metabolismo , Precursores de RNA/metabolismo , RNA de Transferência/metabolismo
8.
J Biol Chem ; 297(6): 101373, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757128

RESUMO

Human ATP:cob(I)alamin adenosyltransferase (ATR) is a mitochondrial enzyme that catalyzes an adenosyl transfer to cob(I)alamin, synthesizing 5'-deoxyadenosylcobalamin (AdoCbl) or coenzyme B12. ATR is also a chaperone that escorts AdoCbl, transferring it to methylmalonyl-CoA mutase, which is important in propionate metabolism. Mutations in ATR lead to methylmalonic aciduria type B, an inborn error of B12 metabolism. Our previous studies have furnished insights into how ATR protein dynamics influence redox-linked cobalt coordination chemistry, controlling its catalytic versus chaperone functions. In this study, we have characterized three patient mutations at two conserved active site residues in human ATR, R190C/H, and E193K and obtained crystal structures of R190C and E193K variants, which display only subtle structural changes. All three mutations were found to weaken affinities for the cob(II)alamin substrate and the AdoCbl product and increase KM(ATP). 31P NMR studies show that binding of the triphosphate product, formed during the adenosylation reaction, is also weakened. However, although the kcat of this reaction is significantly diminished for the R190C/H mutants, it is comparable with the WT enzyme for the E193K variant, revealing the catalytic importance of Arg-190. Furthermore, although the E193K mutation selectively impairs the chaperone function by promoting product release into solution, its catalytic function might be unaffected at physiological ATP concentrations. In contrast, the R190C/H mutations affect both the catalytic and chaperoning activities of ATR. Because the E193K mutation spares the catalytic activity of ATR, our data suggest that the patients carrying this mutation are more likely to be responsive to cobalamin therapy.


Assuntos
Trifosfato de Adenosina/metabolismo , Alquil e Aril Transferases/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Alquil e Aril Transferases/química , Catálise , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Cinética , Ligação Proteica
9.
Proc Natl Acad Sci U S A ; 117(48): 30412-30422, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199623

RESUMO

Cobalamin is a complex organometallic cofactor that is processed and targeted via a network of chaperones to its dependent enzymes. AdoCbl (5'-deoxyadenosylcobalamin) is synthesized from cob(II)alamin in a reductive adenosylation reaction catalyzed by adenosyltransferase (ATR), which also serves as an escort, delivering AdoCbl to methylmalonyl-CoA mutase (MCM). The mechanism by which ATR signals that its cofactor cargo is ready (AdoCbl) or not [cob(II)alamin] for transfer to MCM, is not known. In this study, we have obtained crystallographic snapshots that reveal ligand-induced ordering of the N terminus of Mycobacterium tuberculosis ATR, which organizes a dynamic cobalamin binding site and exerts exquisite control over coordination geometry, reactivity, and solvent accessibility. Cob(II)alamin binds with its dimethylbenzimidazole tail splayed into a side pocket and its corrin ring buried. The cosubstrate, ATP, enforces a four-coordinate cob(II)alamin geometry, facilitating the unfavorable reduction to cob(I)alamin. The binding mode for AdoCbl is notably different from that of cob(II)alamin, with the dimethylbenzimidazole tail tucked under the corrin ring, displacing the N terminus of ATR, which is disordered. In this solvent-exposed conformation, AdoCbl undergoes facile transfer to MCM. The importance of the tail in cofactor handover from ATR to MCM is revealed by the failure of 5'-deoxyadenosylcobinamide, lacking the tail, to transfer. In the absence of MCM, ATR induces a sacrificial cobalt-carbon bond homolysis reaction in an unusual reversal of the heterolytic chemistry that was deployed to make the same bond. The data support an important role for the dimethylbenzimidazole tail in moving the cobalamin cofactor between active sites.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Cobamidas/química , Cobamidas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cinética , Modelos Biológicos , Conformação Molecular , Complexos Multiproteicos , Ligação Proteica , Relação Estrutura-Atividade
10.
J Phys Chem B ; 124(47): 10732-10738, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33174757

RESUMO

We have used transient absorption spectroscopy in the UV-visible and X-ray regions to characterize the excited state of CarH, a protein photoreceptor that uses a form of B12, adenosylcobalamin (AdoCbl), to sense light. With visible excitation, a nanosecond-lifetime photoactive excited state is formed with unit quantum yield. The time-resolved X-ray absorption near edge structure difference spectrum of this state demonstrates that the excited state of AdoCbl in CarH undergoes only modest structural expansion around the central cobalt, a behavior similar to that observed for methylcobalamin rather than for AdoCbl free in solution. We propose a new mechanism for CarH photoreactivity involving formation of a triplet excited state. This allows the sensor to operate with high quantum efficiency and without formation of potentially dangerous side products. By stabilizing the excited electronic state, CarH controls reactivity of AdoCbl and enables slow reactions that yield nonreactive products and bypass bond homolysis and reactive radical species formation.


Assuntos
Cobalto
11.
J Am Chem Soc ; 142(38): 16334-16345, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32871076

RESUMO

The CblC and CblD chaperones are involved in early steps in the cobalamin trafficking pathway. Cobalamin derivatives entering the cytoplasm are converted by CblC to a common cob(II)alamin intermediate via glutathione-dependent alkyltransferase or reductive elimination activities. Cob(II)alamin is subsequently converted to one of two biologically active alkylcobalamins by downstream chaperones. The function of CblD has been elusive although it is known to form a complex with CblC under certain conditions. Here, we report that CblD provides a sulfur ligand to cob(II)alamin bound to CblC, forming an interprotein coordination complex that rapidly oxidizes to thiolato-cob(III)alamin. Cysteine scanning mutagenesis and EPR spectroscopy identified Cys-261 on CblD as the sulfur donor. The unusual interprotein Co-S bond was characterized by X-ray absorption spectroscopy and visualized in the crystal structure of the human CblD thiolato-cob(III)alamin complex. Our study provides insights into how cobalamin coordination chemistry could be utilized for cofactor translocation in the trafficking pathway.


Assuntos
Cobalto/metabolismo , Chaperonas Moleculares/metabolismo , Enxofre/metabolismo , Vitamina B 12/metabolismo , Cobalto/química , Modelos Moleculares , Chaperonas Moleculares/química , Enxofre/química , Vitamina B 12/química
12.
Science ; 366(6465): 589-593, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672889

RESUMO

Itaconate is an immunometabolite with both anti-inflammatory and bactericidal effects. Its coenzyme A (CoA) derivative, itaconyl-CoA, inhibits B12-dependent methylmalonyl-CoA mutase (MCM) by an unknown mechanism. We demonstrate that itaconyl-CoA is a suicide inactivator of human and Mycobacterium tuberculosis MCM, which forms a markedly air-stable biradical adduct with the 5'-deoxyadenosyl moiety of the B12 coenzyme. Termination of the catalytic cycle in this way impairs communication between MCM and its auxiliary repair proteins. Crystallography and spectroscopy of the inhibited enzyme are consistent with a metal-centered cobalt radical ~6 angstroms away from the tertiary carbon-centered radical and suggest a means of controlling radical trajectories during MCM catalysis. Mycobacterial MCM thus joins enzymes in the glyoxylate shunt and the methylcitrate cycle as targets of itaconate in pathogen propionate metabolism.


Assuntos
Coenzima A/metabolismo , Metilmalonil-CoA Mutase/antagonistas & inibidores , Metilmalonil-CoA Mutase/metabolismo , Mycobacterium tuberculosis/enzimologia , Succinatos/metabolismo , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Desoxiadenosinas , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligação de Hidrogênio , Macrófagos/metabolismo , Metilmalonil-CoA Mutase/química , Modelos Moleculares , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Propionatos/metabolismo , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Succinatos/farmacologia , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia
13.
RNA ; 25(12): 1646-1660, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31455609

RESUMO

Human mitochondrial ribonuclease P (mtRNase P) is an essential three-protein complex that catalyzes the 5' end maturation of mitochondrial precursor tRNAs (pre-tRNAs). Mitochondrial RNase P Protein 3 (MRPP3), a protein-only RNase P (PRORP), is the nuclease component of the mtRNase P complex and requires a two-protein S-adenosyl-methionine (SAM)-dependent methyltransferase MRPP1/2 subcomplex to function. Dysfunction of mtRNase P is linked to several human mitochondrial diseases, such as mitochondrial myopathies. Despite its central role in mitochondrial RNA processing, little is known about how the protein subunits of mtRNase P function synergistically. Here, we use purified mtRNase P to demonstrate that mtRNase P recognizes, cleaves, and methylates some, but not all, mitochondrial pre-tRNAs in vitro. Additionally, mtRNase P does not process all mitochondrial pre-tRNAs uniformly, suggesting the possibility that some pre-tRNAs require additional factors to be cleaved in vivo. Consistent with this, we found that addition of the TRMT10C (MRPP1) cofactor SAM enhances the ability of mtRNase P to bind and cleave some mitochondrial pre-tRNAs. Furthermore, the presence of MRPP3 can enhance the methylation activity of MRPP1/2. Taken together, our data demonstrate that the subunits of mtRNase P work together to efficiently recognize, process, and methylate human mitochondrial pre-tRNAs.


Assuntos
Mitocôndrias/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribonuclease P/química , Ribonuclease P/metabolismo , Humanos , Metilação , Mitocôndrias/enzimologia , Ligação Proteica , RNA de Transferência/química , Especificidade por Substrato
14.
Angew Chem Int Ed Engl ; 56(26): 7387-7392, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28544088

RESUMO

B12 antivitamins are important and robust tools for investigating the biological roles of vitamin B12 . Here, the potential antivitamin B12 2,4-difluorophenylethynylcobalamin (F2PhEtyCbl) was prepared, and its 3D structure was studied in solution and in the crystal. Chemically inert F2PhEtyCbl resisted thermolysis of its Co-C bond at 100 °C, was stable in bright daylight, and also remained intact upon prolonged storage in aqueous solution at room temperature. It binds to the human B12 -processing enzyme CblC with high affinity (KD =130 nm) in the presence of the cosubstrate glutathione (GSH). F2PhEtyCbl withstood tailoring by CblC, and it also stabilized the ternary complex with GSH. The crystal structure of this inactivated assembly provides first insight into the binding interactions between an antivitamin B12 and CblC, as well as into the organization of GSH and a base-off cobalamin in the active site of this enzyme.


Assuntos
Glutationa/química , Vitamina B 12/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Flúor/química , Humanos , Hidrólise , Cinética , Modelos Moleculares , Estrutura Molecular , Análise Espectral/métodos , Especificidade por Substrato , Temperatura , Vitamina B 12/química , Vitamina B 12/farmacologia
15.
J Biol Chem ; 292(23): 9733-9744, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28442570

RESUMO

The cobalamin or B12 cofactor supports sulfur and one-carbon metabolism and the catabolism of odd-chain fatty acids, branched-chain amino acids, and cholesterol. CblC is a B12-processing enzyme involved in an early cytoplasmic step in the cofactor-trafficking pathway. It catalyzes the glutathione (GSH)-dependent dealkylation of alkylcobalamins and the reductive decyanation of cyanocobalamin. CblC from Caenorhabditis elegans (ceCblC) also exhibits a robust thiol oxidase activity, converting reduced GSH to oxidized GSSG with concomitant scrubbing of ambient dissolved O2 The mechanism of thiol oxidation catalyzed by ceCblC is not known. In this study, we demonstrate that novel coordination chemistry accessible to ceCblC-bound cobalamin supports its thiol oxidase activity via a glutathionyl-cobalamin intermediate. Deglutathionylation of glutathionyl-cobalamin by a second molecule of GSH yields GSSG. The crystal structure of ceCblC provides insights into how architectural differences at the α- and ß-faces of cobalamin promote the thiol oxidase activity of ceCblC but mute it in wild-type human CblC. The R161G and R161Q mutations in human CblC unmask its latent thiol oxidase activity and are correlated with increased cellular oxidative stress disease. In summary, we have uncovered key architectural features in the cobalamin-binding pocket that support unusual cob(II)alamin coordination chemistry and enable the thiol oxidase activity of ceCblC.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/enzimologia , Proteínas de Transporte/química , Cobamidas/química , Estresse Oxidativo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cobamidas/genética , Cobamidas/metabolismo , Humanos , Mutação de Sentido Incorreto , Oxirredutases , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
16.
J Biol Chem ; 290(49): 29155-66, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26364851

RESUMO

In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an α+ß fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function.


Assuntos
FMN Redutase/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação , Vitamina B 12/química , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Citoplasma/metabolismo , Homocistinúria/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Lisossomos/metabolismo , Mimetismo Molecular , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Oxigênio/metabolismo , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Difração de Raios X
17.
Proteins ; 82(10): 2552-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24895213

RESUMO

Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S-adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent K(M) for K⁺ of about 100 µM. The presence of potassium ions lowers the apparent K(M) of the enzyme for homocysteine, but it does not affect the apparent K(M) for betaine or the apparent k(cat) for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K⁺ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K⁺ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26-Gly27-Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site-specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme.


Assuntos
Betaína-Homocisteína S-Metiltransferase/metabolismo , Homocisteína/metabolismo , Modelos Moleculares , Potássio/metabolismo , Betaína/química , Betaína/metabolismo , Betaína-Homocisteína S-Metiltransferase/química , Betaína-Homocisteína S-Metiltransferase/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Ativação Enzimática , Homocisteína/química , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Potássio/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
18.
J Biol Chem ; 288(43): 30980-9, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23996001

RESUMO

MeaB is an accessory GTPase protein involved in the assembly, protection, and reactivation of 5'-deoxyadenosyl cobalamin-dependent methylmalonyl-CoA mutase (MCM). Mutations in the human ortholog of MeaB result in methylmalonic aciduria, an inborn error of metabolism. G-proteins typically utilize conserved switch I and II motifs for signaling to effector proteins via conformational changes elicited by nucleotide binding and hydrolysis. Our recent discovery that MeaB utilizes an unusual switch III region for bidirectional signaling with MCM raised questions about the roles of the switch I and II motifs in MeaB. In this study, we addressed the functions of conserved switch II residues by performing alanine-scanning mutagenesis. Our results demonstrate that the GTPase activity of MeaB is autoinhibited by switch II and that this loop is important for coupling nucleotide-sensitive conformational changes in switch III to elicit the multiple chaperone functions of MeaB. Furthermore, we report the structure of MeaB·GDP crystallized in the presence of AlFx(-) to form the putative transition state analog, GDP·AlF4(-). The resulting crystal structure and its comparison with related G-proteins support the conclusion that the catalytic site of MeaB is incomplete in the absence of the GTPase-activating protein MCM and therefore unable to stabilize the transition state analog. Favoring an inactive conformation in the absence of the client MCM protein might represent a strategy for suppressing the intrinsic GTPase activity of MeaB in which the switch II loop plays an important role.


Assuntos
Alquil e Aril Transferases/química , Proteínas de Bactérias/química , Guanosina Difosfato/química , Methylobacterium extorquens/enzimologia , Chaperonas Moleculares/química , Vitamina B 12/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Humanos , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Methylobacterium extorquens/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Vitamina B 12/genética , Vitamina B 12/metabolismo
19.
J Biol Chem ; 288(27): 20002-13, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23698001

RESUMO

Mercaptopyruvate sulfurtransferase (MST) is a source of endogenous H2S, a gaseous signaling molecule implicated in a wide range of physiological processes. The contribution of MST versus the other two H2S generators, cystathionine ß-synthase and γ-cystathionase, has been difficult to evaluate because many studies on MST have been conducted at high pH and have used varied reaction conditions. In this study, we have expressed, purified, and crystallized human MST in the presence of the substrate 3-mercaptopyruvate (3-MP). The kinetics of H2S production by MST from 3-MP was studied at pH 7.4 in the presence of various physiological persulfide acceptors: cysteine, dihydrolipoic acid, glutathione, homocysteine, and thioredoxin, and in the presence of cyanide. The crystal structure of MST reveals a mixture of the product complex containing pyruvate and an active site cysteine persulfide (Cys(248)-SSH) and a nonproductive intermediate in which 3-MP is covalently linked via a disulfide bond to an active site cysteine. The crystal structure analysis allows us to propose a detailed mechanism for MST in which an Asp-His-Ser catalytic triad is positioned to activate the nucleophilic cysteine residue and participate in general acid-base chemistry, whereas our kinetic analysis indicates that thioredoxin is likely to be the major physiological persulfide acceptor for MST.


Assuntos
Sulfeto de Hidrogênio/química , Modelos Químicos , Sulfurtransferases/química , Catálise , Cristalografia por Raios X , Cisteína/análogos & derivados , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Cinética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(49): 20958-63, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21081698

RESUMO

The catalytic potential for H(2)S biogenesis and homocysteine clearance converge at the active site of cystathionine ß-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes ß-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H(2)S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 Å) and an aminoacrylate intermediate (1.55 Å) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory "energy-sensing" CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.


Assuntos
Cistationina beta-Sintase/química , Proteínas de Drosophila/química , Animais , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cistationina beta-Sintase/metabolismo , Lisina , Estrutura Terciária de Proteína , S-Adenosilmetionina , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA